1
|
Suyama M, Nagase T and Ohara O: HUGE: a
database for human large proteins identified by Kazusa cDNA
sequencing project. Nucleic Acids Res. 27:338–339. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kikuno R, Nagase T, Nakayama M, et al:
HUGE: a database for human KIAA proteins, a 2004 update integrating
HUGEppi and ROUGE. Nucleic Acids Res. 32:D502–D504. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Nagase T, Ishikawa K, Kikuno R, Hirosawa
M, Nomura N and Ohara O: Prediction of the coding sequences of
unidentified human genes. XV The complete sequences of 100 new cDNA
clones from brain which code for large proteins in vitro. DNA Res.
6:337–345. 1999. View Article : Google Scholar
|
4
|
Michishita E, Garcés G, Barrett JC and
Horikawa I: Upregulation of the KIAA1199 gene is associated with
cellular mortality. Cancer Lett. 239:71–77. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Abe S, Usami S and Nakamura Y: Mutations
in the gene encoding KIAA1199 protein, an inner-ear protein
expressed in Deiters’ cells and the fibrocytes, as the cause of
nonsyndromic hearing loss. J Hum Genet. 48:564–570. 2003.PubMed/NCBI
|
6
|
Guo J, Cheng H, Zhao S and Yu L: GG: a
domain involved in phage LTF apparatus and implicated in human MEB
and non-syndromic hearing loss diseases. FEBS Lett. 580:581–584.
2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
He QY, Liu XH, Li Q, Studholme DJ, Li XW
and Liang SP: G8: a novel domain associated with polycystic kidney
disease and non-syndromic hearing loss. Bioinformatics.
22:2189–2191. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kuscu C, Evensen N, Kim D, Hu YJ, Zucker S
and Cao J: Transcriptional and epigenetic regulation of
KIAA1199 gene expression in human breast cancer. PLoS One.
7:e446612012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sabates-Bellver J, Van der Flier LG, de
Palo M, et al: Transcriptome profile of human colorectal adenomas.
Mol Cancer Res. 5:1263–1275. 2007. View Article : Google Scholar
|
10
|
Birkenkamp-Demtroder K, Maghnouj A,
Mansilla F, et al: Repression of KIAA1199 attenuates Wnt-signalling
and decreases the proliferation of colon cancer cells. Br J Cancer.
105:552–561. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tiwari A, Schneider M, Fiorino A, et al:
Early insights into the function of KIAA1199, a markedly
overexpressed protein in human colorectal tumors. PLoS One.
8:e694732013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Matsuzaki S, Tanaka F, Mimori K, Tahara K,
Inoue H and Mori M: Clinicopathologic significance of
KIAA1199 overexpression in human gastric cancer. Ann Surg
Oncol. 16:2042–2051. 2009.
|
13
|
Usami S, Takumi Y, Suzuki N, et al: The
localization of proteins encoded by CRYM, KIAA1199,
UBA52, COL9A3, and COL9A1, genes highly
expressed in the cochlea. Neuroscience. 154:22–28. 2008.
|
14
|
Abe S, Katagiri T, Saito-Hisaminato A, et
al: Identification of CRYM as a candidate responsible for
nonsyndromic deafness, through cDNA microarray analysis of human
cochlear and vestibular tissues. Am J Hum Genet. 72:73–82.
2003.
|
15
|
Voronkov A and Krauss S: Wnt/beta-catenin
signaling and small molecule inhibitors. Curr Pharm Des.
19:633–664. 2013. View Article : Google Scholar
|
16
|
Katanaev VL, Ponzielli R, Sémériva M and
Tomlinson A: Trimeric G protein-dependent frizzled signaling in
Drosophila. Cell. 120:111–122. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma L and Wang HY: Suppression of cyclic
GMP-dependent protein kinase is essential to the
Wnt/cGMP/Ca2+ pathway. J Biol Chem. 281:30990–31001.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kestler HA and Kühl M: From individual Wnt
pathways towards a Wnt signalling network. Philos Trans R Soc Lond
B Biol Sci. 363:1333–1347. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nakayama M, Kikuno R and Ohara O:
Protein-protein interactions between large proteins: two-hybrid
screening using a functionally classified library composed of long
cDNAs. Genome Res. 12:1773–1784. 2002. View Article : Google Scholar
|
20
|
Zachary IC, Frankel P, Evans IM and
Pellet-Many C: The role of neuropilins in cell signalling. Biochem
Soc Trans. 37:1171–1178. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ramer R, Walther U, Borchert P, Laufer S,
Linnebacher M and Hinz B: Induction but not inhibition of COX-2
confers human lung cancer cell apoptosis by celecoxib. J Lipid Res.
54:3116–3129. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Abdelrahim M and Safe S: Cyclooxygenase-2
inhibitors decrease vascular endothelial growth factor expression
in colon cancer cells by enhanced degradation of Sp1 and Sp4
proteins. Mol Pharmacol. 68:317–329. 2005.
|
23
|
Zhou L, Wang DS, Li QJ, Sun W, Zhang Y and
Dou KF: The down-regulation of Notch1 inhibits the invasion and
migration of hepatocellular carcinoma cells by inactivating the
cyclooxygenase-2/Snail/E-cadherin pathway in vitro. Dig Dis Sci.
58:1016–1025. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Que W, Li S and Chen J: NS-398 enhances
the efficacy of bortezomib against RPMI8226 human multiple myeloma
cells. Mol Med Rep. 7:1641–1645. 2013.PubMed/NCBI
|
25
|
Galamb O, Spisák S, Sipos F, et al:
Reversal of gene expression changes in the colorectal
normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J
Cancer. 102:765–773. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Evensen NA, Kuscu C, Nguyen HL, et al:
Unraveling the role of KIAA1199, a novel endoplasmic reticulum
protein, in cancer cell migration. J Natl Cancer Inst.
105:1402–1416. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jia S, Ji J and Jiang WG: KIAA1199
knockdown attenuate cell growth of gastric cancer cells and its
over-expression is associated with disease progression in patient
with gastric cancer. Eur J Cancer. 45(Suppl 2): S5752013.
|
28
|
Usami S, Wagatsuma M, Fukuoka H, et al:
The responsible genes in Japanese deafness patients and clinical
application using Invader assay. Acta Otolaryngol. 128:446–454.
2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dash DP, Silvestri G and Hughes AE: Fine
mapping of the keratoconus with cataract locus on chromosome 15q
and candidate gene analysis. Mol Vis. 12:499–505. 2006.PubMed/NCBI
|
30
|
Chivu Economescu M, Necula LG, Dragu D, et
al: Identification of potential biomarkers for early and advanced
gastric adenocarcinoma detection. Hepatogastroenterology.
57:1453–1464. 2010.PubMed/NCBI
|
31
|
LaPointe LC, Pedersen SK, Dunne R, et al:
Discovery and validation of molecular biomarkers for colorectal
adenomas and cancer with application to blood testing. PLoS One.
7:e290592012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Paunu N, Lahermo P, Onkamo P, et al: A
novel low-penetrance locus for familial glioma at 15q23–q26.3.
Cancer Res. 62:3798–3802. 2002.PubMed/NCBI
|
33
|
Zweemer RP, Ryan A, Snijders AM, et al:
Comparative genomic hybridization of microdissected familial
ovarian carcinoma: two deleted regions on chromosome 15q not
previously identified in sporadic ovarian carcinoma. Lab Invest.
81:1363–1370. 2001. View Article : Google Scholar
|
34
|
Stanton SE, Shin SW, Johnson BE and
Meyerson M: Recurrent allelic deletions of chromosome arms 15q and
16q in human small cell lung carcinomas. Genes Chromosomes Cancer.
27:323–331. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chanthammachat P, Promwikorn W,
Pruegsanusak K, et al: Comparative proteomic analysis of oral
squamous cell carcinoma and adjacent non-tumour tissue from
Thailand. Arch Oral Biol. 58:1677–1685. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Raish M, Khurshid M, Ansari MA, et al:
Analysis of molecular cytogenetic alterations in uterine
leiomyosarcoma by array-based comparative genomic hybridization. J
Cancer Res Clin Oncol. 138:1173–1186. 2012. View Article : Google Scholar
|
37
|
Motaln H, Gruden K, Hren M, et al: Human
mesenchymal stem cells exploit the immune response mediating
chemokines to impact the phenotype of glioblastoma. Cell
Transplant. 21:1529–1545. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Raymond F, Métairon S, Kussmann M, et al:
Comparative gene expression profiling between human cultured
myotubes and skeletal muscle tissue. BMC Genomics. 11:1252010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Harada H and Takahashi M: CD44-dependent
intracellular and extracellular catabolism of hyaluronic acid by
hyaluronidase-1 and -2. J Biol Chem. 282:5597–5607. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Csoka AB, Frost GI and Stern R: The six
hyaluronidase-like genes in the human and mouse genomes. Matrix
Biol. 20:499–508. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yoshida H, Nagaoka A, Kusaka-Kikushima A,
et al: KIAA1199, a deafness gene of unknown function, is a new
hyaluronan binding protein involved in hyaluronan depolymerization.
Proc Natl Acad Sci USA. 110:5612–5617. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yoshida H, Nagaoka A, Nakamura S, Sugiyama
Y, Okada Y and Inoue S: Murine homologue of the human KIAA1199 is
implicated in hyaluronan binding and depolymerization. FEBS Open
Bio. 3:352–356. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yoshida H, Nagaoka A, Nakamura S, Tobiishi
M, Sugiyama Y and Inoue S: N-terminal signal sequence is required
for cellular trafficking and hyaluronan-depolymerization of
KIAA1199. FEBS Lett. 588:111–116. 2013. View Article : Google Scholar : PubMed/NCBI
|