1
|
Jenuwein T and Allis CD: Translating the
histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fischle W, Wang Y and Allis CD: Histone
and chromatin cross-talk. Curr Opin Cell Biol. 15:172–183. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lachner M, O’Sullivan RJ and Jenuwein T:
An epigenetic road map for histone lysine methylation. J Cell Sci.
116:2117–2124. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Klose RJ, Kallin EM and Zhang Y:
JmjC-domain-containing proteins and histone demethylation. Nat Rev
Genet. 7:715–727. 2006. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Cang S, Ma Y and Liu D: New clinical
developments in histone deacetylase inhibitors for epigenetic
therapy of cancer. J Hematol Oncol. 2:222009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tan J, Cang S, Ma Y, Petrillo RL and Liu
D: Novel histone deacetylase inhibitors in clinical trials as
anti-cancer agents. J Hematol Oncol. 3:52010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rea S, Eisenhaber F, O’Carroll D, et al:
Regulation of chromatin structure by site-specific histone H3
methyltransferases. Nature. 406:593–599. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Allshire RC, Nimmo ER, Ekwall K, Javerzat
JP and Cranston G: Mutations derepressing silent centromeric
domains in fission yeast disrupt chromosome segregation. Genes Dev.
9:218–233. 1995. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tschiersch B, Hofmann A, Krauss V, Dorn R,
Korge G and Reuter G: The protein encoded by the Drosophila
position-effect variegation suppressor gene Su(var)3–9 combines
domains of antagonistic regulators of homeotic gene complexes. EMBO
J. 13:3822–3831. 1994.
|
10
|
Aagaard L, Laible G, Selenko P, et al:
Functional mammalian homologues of the Drosophila PEV-modifier
Su(var)3–9 encode centromere-associated proteins which complex with
the heterochromatin component M31. EMBO J. 18:1923–1938.
1999.PubMed/NCBI
|
11
|
Peters AH, Kubicek S, Mechtler K, et al:
Partitioning and plasticity of repressive histone methylation
states in mammalian chromatin. Mol Cell. 12:1577–1589. 2003.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Di Croce L, Raker VA, Corsaro M, et al:
Methyltransferase recruitment and DNA hypermethylation of target
promoters by an oncogenic transcription factor. Science.
295:1079–1082. 2002.PubMed/NCBI
|
13
|
Nielsen SJ, Schneider R, Bauer UM, et al:
Rb targets histone H3 methylation and HP1 to promoters. Nature.
412:561–565. 2001. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Varambally S, Dhanasekaran SM, Zhou M, et
al: The polycomb group protein EZH2 is involved in progression of
prostate cancer. Nature. 419:624–629. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Milne TA, Briggs SD, Brock HW, et al: MLL
targets SET domain methyltransferase activity to Hox gene
promoters. Mol Cell. 10:1107–1117. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chakraborty S, Sinha KK, Senyuk V and
Nucifora G: SUV39H1 interacts with AML1 and abrogates AML1
transactivity. AML1 is methylated in vivo. Oncogene. 22:1107–1117.
2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma X, Fang Y, Beklemisheva A, et al:
Phenylhexyl isothiocyanate inhibits histone deacetylases and
remodels chromatins to induce growth arrest in human leukemia
cells. Int J Oncol. 28:1287–1293. 2006.PubMed/NCBI
|
18
|
Kang MY, Lee BB, Kim YH, et al:
Association of the SUV39H1 histone methyltransferase with the DNA
methyltransferase 1 at mRNA expression level in primary colorectal
cancer. Int J Cancer. 121:2192–2197. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zou Y, Ma X, Huang Y, Hong L and Chiao JW:
Effect of phenylhexyl isothiocyanate on aberrant histone H3
methylation in primary human acute leukemia. J Hematol Oncol.
5:362012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Park YS, Jin MY, Kim YJ, Yook JH, Kim BS
and Jang SJ: The global histone modification pattern correlates
with cancer recurrence and overall survival in gastric
adenocarcinoma. Ann Surg Oncol. 15:1968–1976. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ozdağ H, Teschendorff AE, Ahmed AA, et al:
Differential expression of selected histone modifier genes in human
solid cancers. BMC Genomics. 7:902006.PubMed/NCBI
|
22
|
Pogribny IP, Ross SA, Tryndyak VP,
Pogribna M, Poirier LA and Karpinets TV: Histone H3 lysine 9 and H4
lysine 20 trimethylation and the expression of Suv4-20h2 and
Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced
by methyl deficiency in rats. Carcinogenesis. 27:1180–1186. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Williams L and Grafi G: The retinoblastoma
protein - a bridge to heterochromatin. Trends Plant Sci. 5:239–240.
2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dunaief JL, Strober BE, Guha S, et al: The
retinoblastoma protein and BRG1 form a complex and cooperate to
induce cell cycle arrest. Cell. 79:119–130. 1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Trouche D, Le Chalony C, Muchardt C, Yaniv
M and Kouzarides T: RB and hbrm cooperate to repress the activation
functions of E2F1. Proc Natl Acad Sci USA. 94:11268–11273. 1997.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cheng M, Olivier P, Diehl JA, et al: The
p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators
of cyclin D-dependent kinases in murine fibroblasts. EMBO J.
18:1571–1583. 1999.
|
27
|
Czvitkovich S, Sauer S, Peters AH, et al:
Over-expression of the SUV39H1 histone methyltransferase induces
altered proliferation and differentiation in transgenic mice. Mech
Dev. 107:141–153. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ait-Si-Ali S, Guasconi V, Fritsch L, et
al: A Suv39h-dependent mechanism for silencing S-phase genes
in differentiating but not in cycling cells. EMBO J. 23:605–615.
2004.PubMed/NCBI
|
29
|
Tamaru H and Selker EU: A histone H3
methyltransferase controls DNA methylation in Neurospora
crassa. Nature. 414:277–283. 2001. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Jackson JP, Lindroth AM, Cao X and
Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE
histone H3 methyltransferase. Nature. 416:556–560. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lehnertz B, Ueda Y, Derijck AA, et al:
Suv39h-mediated histone H3 lysine 9 methylation directs DNA
methylation to major satellite repeats at pericentric
heterochromatin. Curr Biol. 13:1192–1200. 2003. View Article : Google Scholar
|
32
|
Czermin B, Schotta G, Hülsmann BB, et al:
Physical and functional association of SU(VAR)3–9 and HDAC1 in
Drosophila. EMBO Rep. 2:915–919. 2001.PubMed/NCBI
|
33
|
Vaute O, Nicolas E, Vandel L and Trouche
D: Functional and physical interaction between the histone methyl
transferase Suv39H1 and histone deacetylases. Nucleic Acids Res.
30:475–481. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lachner M and Jenuwein T: The many faces
of histone lysine methylation. Curr Opin Cell Biol. 14:286–298.
2002. View Article : Google Scholar : PubMed/NCBI
|