1
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thorgeirsson SS and Grisham JW: Molecular
pathogenesis of human hepatocellular carcinoma. Nat Genet.
31:339–346. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bruix J, Sala M and Llovet JM:
Chemoembolization for hepatocellular carcinoma. Gastroenterology.
127:S179–S188. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhu AX: Development of sorafenib and other
molecularly targeted agents in hepatocellular carcinoma. Cancer.
112:250–259. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kroemer G and Pouyssegur J: Tumor cell
metabolism: cancer’s Achilles’ heel. Cancer Cell. 13:472–482.
2008.
|
6
|
Ward PS and Thompson CB: Metabolic
reprogramming: a cancer hallmark even Warburg did not anticipate.
Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu RH, Pelicano H, Zhou Y, et al:
Inhibition of glycolysis in cancer cells: a novel strategy to
overcome drug resistance associated with mitochondrial respiratory
defect and hypoxia. Cancer Res. 65:613–621. 2005.
|
8
|
Pelicano H, Martin D, Xu RH and Huang P:
Glycolysis inhibition for anticancer treatment. Oncogene.
25:4633–4646. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vander Heiden MG: Targeting cancer
metabolism: a therapeutic window opens. Nat Rev Drug Discov.
10:671–684. 2011.PubMed/NCBI
|
10
|
Tennant DA, Durán RV and Gottlieb E:
Targeting metabolic transformation for cancer therapy. Nat Rev
Cancer. 10:267–277. 2010. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Locasale JW: Serine, glycine and
one-carbon units: cancer metabolism in full circle. Nat Rev Cancer.
13:572–583. 2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Menendez JA and Lupu R: Oncogenic
properties of the endogenous fatty acid metabolism: molecular
pathology of fatty acid synthase in cancer cells. Curr Opin Clin
Nutr Metab Care. 9:346–357. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tirado-Vélez JM, Joumady I, Sáez-Benito A,
Cózar-Castellano I and Perdomo G: Inhibition of fatty acid
metabolism reduces human myeloma cells proliferation. PloS One.
7:e464842012.PubMed/NCBI
|
14
|
Menendez JA and Lupu R: Fatty acid
synthase and the lipogenic phenotype in cancer pathogenesis. Nat
Rev Cancer. 7:763–777. 2007. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Huang HL, Hsu HP, Shieh SC, et al:
Attenuation of argininosuccinate lyase inhibits cancer growth via
cyclin A2 and nitric oxide. Mol Cancer Ther. 12:2505–2516. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Chang YS, Tsai CT, Huangfu CA, et al:
ACSL3 and GSK-3β are essential for lipid upregulation induced by
endoplasmic reticulum stress in liver cells. J Cell Biochem.
112:881–893. 2011.PubMed/NCBI
|
17
|
Nomura DK, Long JZ, Niessen S, Hoover HS,
Ng SW and Cravatt BF: Monoacylglycerol lipase regulates a fatty
acid network that promotes cancer pathogenesis. Cell. 140:49–61.
2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ye L, Zhang B, Seviour EG, et al:
Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cell growth
in colorectal cancer. Cancer Lett. 307:6–17. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Li Y, Niepel MW, et al: Targeted
deletion of thioesterase superfamily member 1 promotes energy
expenditure and protects against obesity and insulin resistance.
Proc Natl Acad Sci USA. 109:5417–5422. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Nieman KM, Kenny HA, Penicka CV, et al:
Adipocytes promote ovarian cancer metastasis and provide energy for
rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kaini RR, Sillerud LO, Zhaorigetu S and Hu
CA: Autophagy regulates lipolysis and cell survival through lipid
droplet degradation in androgen-sensitive prostate cancer cells.
Prostate. 72:1412–1422. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li J, Zhao S, Zhou X, et al: Inhibition of
lipolysis by mercaptoacetate and etomoxir specifically sensitize
drug-resistant lung adenocarcinoma cell to paclitaxel. PloS One.
8:e746232013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hunt MC and Alexson SE: The role acyl-CoA
thioesterases play in mediating intracellular lipid metabolism.
Prog Lipid Res. 41:99–130. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hunt MC, Yamada J, Maltais LJ, Wright MW,
Podesta EJ and Alexson SE: A revised nomenclature for mammalian
acyl-CoA thioesterases/hydrolases. J Lipid Res. 46:2029–2032. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hunt MC, Siponen MI and Alexson SE: The
emerging role of acyl-CoA thioesterases and acyltransferases in
regulating peroxisomal lipid metabolism. Biochim Biophys Acta.
1822:1397–1410. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ellis JM, Wong GW and Wolfgang MJ: Acyl
Coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism
to prevent neurotoxicity. Mol Cell Biol. 33:1869–1882. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Han S and Cohen DE: Functional
characterization of thioesterase superfamily member 1/Acyl-CoA
thioesterase 11: implications for metabolic regulation. J Lipid
Res. 53:2620–2631. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kang HW, Ozdemir C, Kawano Y, et al:
Thioesterase superfamily member 2/Acyl-CoA thioesterase 13
(Them2/Acot13) regulates adaptive thermogenesis in mice. J Biol
Chem. 288:33376–33386. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kang HW, Niepel MW, Han S, Kawano Y and
Cohen DE: Thioesterase superfamily member 2/acyl-CoA thioesterase
13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism.
FASEB J. 26:2209–2221. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ramakrishna M, Williams LH, Boyle SE, et
al: Identification of candidate growth promoting genes in ovarian
cancer through integrated copy number and expression analysis. PloS
One. 5:e99832010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jung WY, Kim YH, Ryu YJ, et al: Acyl-CoA
thioesterase 8 is a specific protein related to nodal metastasis
and prognosis of lung adenocarcinoma. Pathol Res Pract.
209:276–283. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Edgar R, Domrachev M and Lash AE: Gene
Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Roessler S, Long EL, Budhu A, et al:
Integrative genomic identification of genes on 8p associated with
hepatocellular carcinoma progression and patient survival.
Gastroenterology. 142:957–966. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee JS, Chu IS, Mikaelyan A, et al:
Application of comparative functional genomics to identify best-fit
mouse models to study human cancer. Nat Genet. 36:1306–1311. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Tung EK, Mak CK, Fatima S, et al:
Clinicopathological and prognostic significance of serum and tissue
Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int.
31:1494–1504. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hoshida Y, Villanueva A, Kobayashi M, et
al: Gene expression in fixed tissues and outcome in hepatocellular
carcinoma. N Engl J Med. 359:1995–2004. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lu TJ, Lai WY, Huang CY, et al: Inhibition
of cell migration by autophosphorylated mammalian sterile 20-like
kinase 3 (MST3) involves paxillin and protein-tyrosine
phosphatase-PEST. J Biol Chem. 281:38405–38417. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Maloberti PM, Duarte AB, Orlando UD, et
al: Functional interaction between acyl-CoA synthetase 4,
lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of
breast cancer cells. PloS One. 5:e155402010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun Z, Asmann YW, Kalari KR, et al:
Integrated analysis of gene expression, CpG island methylation, and
gene copy number in breast cancer cells by deep sequencing. PloS
One. 6:e174902011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Joshi-Barve S, Barve SS, Amancherla K, et
al: Palmitic acid induces production of proinflammatory cytokine
interleukin-8 from hepatocytes. Hepatology. 46:823–830. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kurahashi N, Inoue M, Iwasaki M, Sasazuki
S and Tsugane S: Dairy product, saturated fatty acid, and calcium
intake and prostate cancer in a prospective cohort of Japanese men.
Cancer Epidemiol Biomarkers Prev. 17:930–937. 2008. View Article : Google Scholar : PubMed/NCBI
|