Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)
- Authors:
- Rubí Viedma-Rodríguez
- Luis Baiza-Gutman
- Fabio Salamanca‑Gómez
- Mariana Diaz‑Zaragoza
- Guadalupe Martínez-Hernández
- Ruth Ruiz Esparza‑Garrido
- Miguel Angel Velázquez-Flores
- Diego Arenas-Aranda
-
Affiliations: Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico, Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico, Biomedical Research Institute (IIBM), UNAM, Mexico City, Mexico - Published online on: May 16, 2014 https://doi.org/10.3892/or.2014.3190
- Pages: 3-15
This article is mentioned in:
Abstract
Kohn AD and Moon RT: Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium. 38:439–446. 2005. | |
Deroo BJ and Korach KS: Estrogen receptors and human disease. J Clin Invest. 116:561–570. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riggins RB, Schrecengost RS, Guerrero MS and Bouton AH: Pathways to tamoxifen resistance. Cancer Lett. 256:1–24. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mueller SO and Korach KS: Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Curr Opin Pharmacol. 1:613–619. 2001. View Article : Google Scholar : PubMed/NCBI | |
Henderson BE and Feigelson HS: Hormonal carcinogenesis. Carcinogenesis. 21:427–433. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA: Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 93:5925–5930. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mosselman S, Polman J and Dijkema R: ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392:49–53. 1996. | |
Dixon D, Couse JF and Korach KS: Disruption of the estrogen receptor gene in mice. Toxicol Pathol. 25:518–520. 1997. View Article : Google Scholar : PubMed/NCBI | |
Elliston JF, Fawell SE, Klein-Hitpass L, et al: Mechanism of estrogen receptor-dependent transcription in a cell-free system. Mol Cell Biol. 10:6607–6612. 1990.PubMed/NCBI | |
Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR and Katzenellenbogen BS: Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 144:4562–4574. 2003. View Article : Google Scholar : PubMed/NCBI | |
Webb P, Lopez GN, Uht RM and Kushner PJ: Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol. 9:443–456. 1995.PubMed/NCBI | |
Kushner PJ, Agard DA, Greene GL, et al: Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 74:311–317. 2000. View Article : Google Scholar : PubMed/NCBI | |
Smith CL and O’Malley BW: Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 25:45–71. 2004. View Article : Google Scholar : PubMed/NCBI | |
Osborne CK, Bardou V, Hopp TA, et al: Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 95:353–361. 2003. View Article : Google Scholar : PubMed/NCBI | |
Saville B, Wormke M, Wang F, et al: Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem. 275:5379–5387. 2000. | |
Kelloff GJ, Lippman SM, Dannenberg AJ, et al: Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer - a plan to move forward. Clin Cancer Res. 12:3661–3697. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK and Osborne CK: Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 10:331S–336S. 2004. View Article : Google Scholar : PubMed/NCBI | |
Le Goff P, Montano MM, Schodin DJ and Katzenellenbogen BS: Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 269:4458–4466. 1994.PubMed/NCBI | |
Vyhlidal C, Samudio I, Kladde MP and Safe S: Transcriptional activation of transforming growth factor α by estradiol: requirement for both a GC-rich site and an estrogen response element half-site. J Mol Endocrinol. 24:329–338. 2000. | |
Lee AV, Cui X and Oesterreich S: Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res. 7(Suppl 12): S4429–S4435. 2001.PubMed/NCBI | |
Yarden RI, Wilson MA and Chrysogelos SA: Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. J Cell Biochem. (Suppl 36): 232–246. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bayliss J, Hilger A, Vishnu P, Diehl K and El-Ashry D: Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res. 13:7029–7036. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Zhang P, Deng W, et al: Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3–kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol. 17:575–588. 2003.PubMed/NCBI | |
Brinkman JA and El-Ashry D: ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia. 14:67–78. 2009. View Article : Google Scholar : PubMed/NCBI | |
Levin ER and Pietras RJ: Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 108:351–361. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pedram A, Razandi M, Lubahn D, Liu J, Vannan M and Levin ER: Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-β to inhibit calcineurin. Endocrinology. 149:3361–3369. 2008.PubMed/NCBI | |
Wu RC, Qin J, Yi P, et al: Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 15:937–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pontiggia O, Rodriguez V, Fabris V, et al: Establishment of an in vitro estrogen-dependent mouse mammary tumor model: a new tool to understand estrogen responsiveness and development of tamoxifen resistance in the context of stromal-epithelial interactions. Breast Cancer Res Treat. 116:247–255. 2009. View Article : Google Scholar | |
Machuca TN, Hsin MK, Ott HC, et al: Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 188:878–880. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goetz MP, Rae JM, Suman VJ, et al: Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 23:9312–9318. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stearns V and Rae JM: Pharmacogenetics and breast cancer endocrine therapy: CYP2D6 as a predictive factor for tamoxifen metabolism and drug response? Expert Rev Mol Med. 10:e342008. View Article : Google Scholar : PubMed/NCBI | |
Jaiswal BS, Janakiraman V, Kljavin NM, et al: Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell. 16:463–474. 2009. | |
Madeira M, Mattar A, Logullo AF, Soares FA and Gebrim LH: Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer. 13:4252013. View Article : Google Scholar | |
McGuire WL: Current status of estrogen receptors in human breast cancer. Cancer. 36:638–644. 1975. View Article : Google Scholar : PubMed/NCBI | |
Esslimani-Sahla M, Simony-Lafontaine J, Kramar A, et al: Estrogen receptor β (ERβ) level but not its ERβcx variant helps to predict tamoxifen resistance in breast cancer. Clin Cancer Res. 10:5769–5776. 2004. | |
Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK and Fuqua SA: Low levels of estrogen receptor β protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res. 10:7490–7499. 2004. | |
Kuiper GG, Lemmen JG, Carlsson B, et al: Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139:4252–4263. 1998. | |
Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG and Davidson NE: Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. 61:7025–7029. 2001. | |
Parl FF: Multiple mechanisms of estrogen receptor gene repression contribute to ER-negative breast cancer. Pharmacogenomics J. 3:251–253. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB and Davidson NE: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54:2552–2555. 1994.PubMed/NCBI | |
Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL and Wolffe AP: DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 25:338–342. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Yin WJ, Lu JS, et al: ERα negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 134:883–890. 2008. | |
Zhou Q, Shaw PG and Davidson NE: Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells. Breast Cancer Res Treat. 117:443–451. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S and Brodie AM: Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res. 71:1893–1903. 2011. | |
Mahfoudi A, Roulet E, Dauvois S, Parker MG and Wahli W: Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci USA. 92:4206–4210. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wolf DM and Jordan VC: The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat. 31:129–138. 1994. View Article : Google Scholar : PubMed/NCBI | |
MacGregor Schafer J, Liu H, Bentrem DJ, Zapf JW and Jordan VC: Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res. 60:5097–5105. 2000. | |
Thomas RS, Sarwar N, Phoenix F, Coombes RC and Ali S: Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-α activity. J Mol Endocrinol. 40:173–184. 2008.PubMed/NCBI | |
Chen D, Washbrook E, Sarwar N, et al: Phosphorylation of human estrogen receptor α at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 21:4921–4931. 2002. | |
Williams CC, Basu A, El-Gharbawy A, Carrier LM, Smith CL and Rowan BG: Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2. BMC Biochem. 10:362009.PubMed/NCBI | |
Rogatsky I, Trowbridge JM and Garabedian MJ: Potentiation of human estrogen receptor α transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem. 274:22296–22302. 1999. | |
Michalides R, van Tinteren H, Balkenende A, et al: Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment. Br J Cancer. 86:402–408. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vendrell JA, Bieche I, Desmetz C, et al: Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat Cancer. 12:75–92. 2005. View Article : Google Scholar | |
Likhite VS, Stossi F, Kim K, Katzenellenbogen BS and Katzenellenbogen JA: Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol. 20:3120–3132. 2006. View Article : Google Scholar | |
Kato S, Endoh H, Masuhiro Y, et al: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 270:1491–1494. 1995. View Article : Google Scholar : PubMed/NCBI | |
Barone I, Brusco L and Fuqua SA: Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res. 16:2702–2708. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Leeuw R, Neefjes J and Michalides R: A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer. 2011:2324352011.PubMed/NCBI | |
Osborne CK and Schiff R: Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 23:1616–1622. 2005. View Article : Google Scholar : PubMed/NCBI | |
Girault I, Bièche I and Lidereau R: Role of estrogen receptor α transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas. 54:342–351. 2006. | |
Webb P, Nguyen P, Shinsako J, et al: Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kressler D, Hock MB and Kralli A: Coactivators PGC-1β and SRC-1 interact functionally to promote the agonist activity of the selective estrogen receptor modulator tamoxifen. J Biol Chem. 282:26897–26907. 2007. | |
Fuqua SA, Schiff R, Parra I, et al: Estrogen receptor β protein in human breast cancer: correlation with clinical tumor parameters. Cancer Res. 63:2434–2439. 2003. | |
Lavinsky RM, Jepsen K, Heinzel T, et al: Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA. 95:2920–2925. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kurokawa H, Lenferink AE, Simpson JF, et al: Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60:5887–5894. 2000. | |
Massarweh S, Osborne CK, Creighton CJ, et al: Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 68:826–833. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fagan DH, Uselman RR, Sachdev D and Yee D: Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment. Cancer Res. 72:3372–3380. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ciampolillo A, De Tullio C and Giorgino F: The IGF-I/IGF-I receptor pathway: implications in the pathophysiology of thyroid cancer. Curr Med Chem. 12:2881–2891. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee AV, Weng CN, Jackson JG and Yee D: Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol. 152:39–47. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fagan DH and Yee D: Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 13:423–429. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee AV, Darbre P and King RJ: Processing of insulin-like growth factor-II (IGF-II) by human breast cancer cells. Mol Cell Endocrinol. 99:211–220. 1994. View Article : Google Scholar : PubMed/NCBI | |
Umayahara Y, Kawamori R, Watada H, et al: Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem. 269:16433–16442. 1994.PubMed/NCBI | |
Salerno M, Sisci D, Mauro L, Guvakova MA, Ando S and Surmacz E: Insulin receptor substrate 1 is a target for the pure antiestrogen ICI 182,780 in breast cancer cells. Int J Cancer. 81:299–304. 1999. View Article : Google Scholar : PubMed/NCBI | |
Becker MA, Ibrahim YH, Cui X, Lee AV and Yee D: The IGF pathway regulates ERα through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol. 25:516–528. 2011. | |
Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S and Nakshatri H: Phosphatidylinositol 3-kinase/AKT- mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J Biol Chem. 276:9817–9824. 2001. | |
Ahn BY, Elwi AN, Lee B, et al: Genetic screen identifies insulin-like growth factor binding protein 5 as a modulator of tamoxifen resistance in breast cancer. Cancer Res. 70:3013–3019. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beattie J, Allan GJ, Lochrie JD and Flint DJ: Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J. 395:1–19. 2006. View Article : Google Scholar : PubMed/NCBI | |
Akkiprik M, Feng Y, Wang H, et al: Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res. 10:2122008. View Article : Google Scholar : PubMed/NCBI | |
Bunone G, Briand PA, Miksicek RJ and Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183. 1996.PubMed/NCBI | |
Parisot JP, Hu XF, DeLuise M and Zalcberg JR: Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer. 79:693–700. 1999. View Article : Google Scholar : PubMed/NCBI | |
Knowlden JM, Hutcheson IR, Barrow D, Gee JM and Nicholson RI: Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology. 146:4609–4618. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cohen BD, Baker DA, Soderstrom C, et al: Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res. 11:2063–2073. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Zi X, Zhao Y, Mascarenhas D and Pollak M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 93:1852–1857. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bouton AH, Riggins RB and Bruce-Staskal PJ: Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene. 20:6448–6458. 2001. View Article : Google Scholar : PubMed/NCBI | |
Defilippi P, Di Stefano P and Cabodi S: p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 16:257–263. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Mani S, Kandimalla ER, et al: The Cockayne syndrome group B DNA repair protein as an anti-cancer target. Int J Oncol. 19:1089–1097. 2001.PubMed/NCBI | |
Planas-Silva MD and Hamilton KN: Targeting c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother Pharmacol. 60:535–543. 2007.PubMed/NCBI | |
Schuh NR, Guerrero MS, Schrecengost RS and Bouton AH: BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J Biol Chem. 285:2309–2317. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gotoh T, Cai D, Tian X, Feig LA and Lerner A: p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J Biol Chem. 275:30118–30123. 2000. | |
Cai D, Iyer A, Felekkis KN, et al: AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63:6802–6808. 2003.PubMed/NCBI | |
van Agthoven T, van Agthoven TL, Dekker A, van der Spek PJ, Vreede L and Dorssers LC: Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17:2799–2808. 1998.PubMed/NCBI | |
Felekkis KN, Narsimhan RP, Near R, et al: AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Mol Cancer Res. 3:32–41. 2005.PubMed/NCBI | |
Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miller TW, Balko JM and Arteaga CL: Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 29:4452–4461. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fox EM, Arteaga CL and Miller TW: Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front Oncol. 2:1452012. | |
Turner N, Pearson A, Sharpe R, et al: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70:2085–2094. 2010. View Article : Google Scholar | |
van der Kaay J, Cullen PJ and Downes CP: Phosphatidylinositol(3,4,5)trisphosphate (Ptdins(3,4,5)P3) mass measurement using a radioligand displacement assay. Methods Mol Biol. 105:109–125. 1998. | |
Maehama T and Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI | |
Massarweh S and Schiff R: Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res. 13:1950–1954. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lewis-Wambi JS and Jordan VC: Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 11:2062009. View Article : Google Scholar : PubMed/NCBI | |
Schiff R, Reddy P, Ahotupa M, et al: Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J Natl Cancer Inst. 92:1926–1934. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nair BC and Vadlamudi RK: Regulation of hormonal therapy resistance by cell cycle machinery. Gene Ther Mol Biol. 12:3952008.PubMed/NCBI | |
Butt AJ, McNeil CM, Musgrove EA and Sutherland RL: Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer. 12(Suppl 10): S47–S59. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kilker RL, Hartl MW, Rutherford TM and Planas-Silva MD: Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen-resistant breast cancer cells. J Steroid Biochem Mol Biol. 92:63–71. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R and Michalides RJ: CDK-independent activation of estrogen receptor by cyclin D1. Cell. 88:405–415. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wilcken NR, Prall OW, Musgrove EA and Sutherland RL: Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res. 3:849–854. 1997.PubMed/NCBI | |
Osborne CK and Schiff R: Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast. 12:362–367. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rudas M, Lehnert M, Huynh A, et al: Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res. 14:1767–1774. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stendahl M, Kronblad A, Rydén L, Emdin S, Bengtsson NO and Landberg G: Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer. 90:1942–1948. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sieuwerts AM, Look MP, Meijer-van Gelder ME, et al: Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res. 12:3319–3328. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bosco EE, Wang Y, Xu H, et al: The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest. 117:218–228. 2007. View Article : Google Scholar : PubMed/NCBI | |
Musgrove EA, Sergio CM, Anderson LR, et al: Identification of downstream targets of estrogen and c-myc in breast cancer cells. Adv Exp Med Biol. 617:445–451. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dhillon NK and Mudryj M: Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene. 21:4626–4634. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA and Sutherland RL: Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 62:6916–6923. 2002.PubMed/NCBI | |
Caldon CE, Sergio CM, Schütte J, et al: Estrogen regulation of cyclin E2 requires cyclin D1 but not c-Myc. Mol Cell Biol. 29:4623–4639. 2009. View Article : Google Scholar : PubMed/NCBI | |
Finn RS, Dering J, Conklin D, et al: PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11:R772009. View Article : Google Scholar | |
Wang L, Wang J, Blaser BW, et al: Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood. 110:2075–2083. 2007. View Article : Google Scholar : PubMed/NCBI | |
Planas-Silva MD and Weinberg RA: Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol Cell Biol. 17:4059–4069. 1997.PubMed/NCBI | |
Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N and Slingerland JM: Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA. 97:9042–9046. 2000.PubMed/NCBI | |
Bachman KE, Blair BG, Brenner K, et al: p21WAF1/CIP1 mediates the growth response to TGF-β in human epithelial cells. Cancer Biol Ther. 3:221–225. 2004. | |
Mokbel K: The evolving role of aromatase inhibitors in breast cancer. Int J Clin Oncol. 7:279–283. 2002.PubMed/NCBI | |
Jordan VC: Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol. 147(Suppl 1): S269–S276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pohl G, Rudas M, Dietze O, et al: High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J Clin Oncol. 21:3594–3600. 2003. | |
Abukhdeir AM and Park BH: P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 10:e192008. View Article : Google Scholar : PubMed/NCBI | |
Ellis PA, Smith IE, Detre S, et al: Reduced apoptosis and proliferation and increased Bcl-2 in residual breast cancer following preoperative chemotherapy. Breast Cancer Res Treat. 48:107–116. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cannings E, Kirkegaard T, Tovey SM, Dunne B, Cooke TG and Bartlett JM: Bad expression predicts outcome in patients treated with tamoxifen. Breast Cancer Res Treat. 102:173–179. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hur J, Chesnes J, Coser KR, et al: The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis. Proc Natl Acad Sci USA. 101:2351–2356. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Li J and Lee AS: GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 67:3734–3740. 2007. View Article : Google Scholar | |
Viedma-Rodriguez R, Baiza-Gutman LA, García-Carrancá A, Moreno-Fierros L, Salamanca-Gómez F and Arenas-Aranda D: Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells. Int J Oncol. 43:1777–1786. 2013.PubMed/NCBI | |
Lopez J, Hesling C, Prudent J, et al: Src tyrosine kinase inhibits apoptosis through the Erk1/2-dependent degradation of the death accelerator Bik. Cell Death Differ. 19:1459–1469. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS, Jackson WH and Barrett JT: Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance. Autophagy. 5:400–403. 2009. | |
Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC and Kroemer G: To die or not to die: that is the autophagic question. Curr Mol Med. 8:78–91. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cully M, You H, Levine AJ and Mak TW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shaw RJ and Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424–430. 2006. View Article : Google Scholar : PubMed/NCBI | |
Degenhardt K, Mathew R, Beaudoin B, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Huang S, Wu H and Zhang M: Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol. 372:223–235. 2007. | |
Ciechomska IA, Goemans GC, Skepper JN and Tolkovsky AM: Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene. 28:2128–2141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maiuri MC, Le Toumelin G, Criollo A, et al: Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539. 2007. View Article : Google Scholar : PubMed/NCBI | |
Levine B, Sinha S and Kroemer G: Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 4:600–606. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boyd JM, Gallo GJ, Elangovan B, et al: Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene. 11:1921–1928. 1995.PubMed/NCBI | |
Naumann U, Bähr O, Wolburg H, et al: Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther. 14:147–161. 2007. View Article : Google Scholar : PubMed/NCBI | |
Oppermann M, Geilen CC, Fecker LF, Gillissen B, Daniel PT and Eberle J: Caspase-independent induction of apoptosis in human melanoma cells by the proapoptotic Bcl-2-related protein Nbk/Bik. Oncogene. 24:7369–7380. 2005. View Article : Google Scholar : PubMed/NCBI | |
Garcia N, Salamanca F, Astudillo-de la Vega H, et al: A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females. BMC Cancer. 5:932005. View Article : Google Scholar : PubMed/NCBI | |
Hirsch DS, Shen Y, Dokmanovic M and Wu WJ: pp60c-Src phosphorylates and activates vacuolar protein sorting 34 to mediate cellular transformation. Cancer Res. 70:5974–5983. 2010. | |
Gao P, Bauvy C, Souquère S, et al: The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem. 285:25570–25581. 2010. View Article : Google Scholar : PubMed/NCBI | |
Furuya N, Yu J, Byfield M, Pattingre S and Levine B: The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy. 1:46–52. 2005. View Article : Google Scholar : PubMed/NCBI | |
Musgrove EA and Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 9:631–643. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dancey J: mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 7:209–219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ciafrè SA, Galardi S, Mangiola A, et al: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 334:1351–1358. 2005.PubMed/NCBI | |
Pallante P, Visone R, Ferracin M, et al: MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kondo N, Toyama T, Sugiura H, Fujii Y and Yamashita H: miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res. 68:5004–5008. 2008. | |
Rao X, Di Leva G, Li M, et al: MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 30:1082–1097. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sachdeva M, Wu H, Ru P, Hwang L, Trieu V and Mo YY: MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miller TE, Ghoshal K, Ramaswamy B, et al: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kovalchuk O, Filkowski J, Meservy J, et al: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liang Z, Wu H, Xia J, et al: Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 79:817–824. 2010. View Article : Google Scholar | |
Xin F, Li M, Balch C, et al: Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics. 25:430–434. 2009. View Article : Google Scholar | |
Guardavaccaro D and Clevers H: Wnt/β-catenin and MAPK signaling: allies and enemies in different battlefields. Sci Signal. 5:pe152012. | |
Gabrovska PN, Smith RA, Tiang T, Weinstein SR, Haupt LM and Griffiths LR: Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep. 39:3879–3892. 2012. View Article : Google Scholar | |
Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI and Goss KH: Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 176:2911–2920. 2010. | |
Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL and Ford CE: The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer. 13:1742013. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Comparative genomics on Wnt3-Wnt9b gene cluster. Int J Mol Med. 15:743–747. 2005.PubMed/NCBI | |
Rubin JS, Bottaro DP, Chedid M, et al: Keratinocyte growth factor. Cell Biol Int. 19:399–411. 1995. View Article : Google Scholar | |
Rubin JS, Bottaro DP, Chedid M, et al: Keratinocyte growth factor as a cytokine that mediates mesenchymal-epithelial interaction. EXS. 74:191–214. 1995.PubMed/NCBI | |
Kumar V, Green S, Staub A and Chambon P: Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J. 5:2231–2236. 1986.PubMed/NCBI | |
Berry M, Metzger D and Chambon P: Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9:2811–2818. 1990. | |
Mader S, Chambon P and White JH: Defining a minimal estrogen receptor DNA binding domain. Nucleic Acids Res. 21:1125–1132. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y, Banerjee S and Sarkar FH: Emerging role of Notch in stem cells and cancer. Cancer Lett. 279:8–12. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shi TP, Xu H, Wei JF, et al: Association of low expression of notch-1 and jagged-1 in human papillary bladder cancer and shorter survival. J Urol. 180:361–366. 2008. View Article : Google Scholar : PubMed/NCBI | |
Al Saleh S, Sharaf LH and Luqmani YA: Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). Int J Oncol. 38:1197–1217. 2011.PubMed/NCBI | |
Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM and Wicha MS: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6:R605–R615. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stylianou S, Clarke RB and Brennan K: Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rizzo P, Miao H, D’Souza G, et al: Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 68:5226–5235. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y, Ahmad A, et al: Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI | |
Hurvitz SA and Pietras RJ: Rational management of endocrine resistance in breast cancer: a comprehensive review of estrogen receptor biology, treatment options, and future directions. Cancer. 113:2385–2397. 2008. View Article : Google Scholar | |
Dibb NJ, Dilworth SM and Mol CD: Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer. 4:718–727. 2004. View Article : Google Scholar : PubMed/NCBI | |
Weigel MT, Ghazoui Z, Dunbier A, Pancholi S, Dowsett M and Martin LA: Preclinical and clinical studies of estrogen deprivation support the PDGF/Abl pathway as a novel therapeutic target for overcoming endocrine resistance in breast cancer. Breast Cancer Res. 14:R782012. View Article : Google Scholar | |
Pancholi V: Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci. 58:902–920. 2001. | |
Jiang BH, Agani F, Passaniti A and Semenza GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57:5328–5335. 1997. | |
Wygrecka M, Marsh LM, Morty RE, et al: Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood. 113:5588–5598. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dudani AK, Cummings C, Hashemi S and Ganz PR: Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb Res. 69:185–196. 1993. View Article : Google Scholar : PubMed/NCBI | |
Peebles KA, Duncan MW, Ruch RJ and Malkinson AM: Proteomic analysis of a neoplastic mouse lung epithelial cell line whose tumorigenicity has been abrogated by transfection with the gap junction structural gene for connexin 43, Gja1. Carcinogenesis. 24:651–657. 2003. View Article : Google Scholar | |
Wu W, Tang X, Hu W, Lotan R, Hong WK and Mao L: Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis. 19:319–326. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ray R and Miller DM: Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol. 11:2154–2161. 1991.PubMed/NCBI | |
Tu SH, Chang CC, Chen CS, et al: Increased expression of enolase α in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 121:539–553. 2010. |