Antibody therapies for melanoma: New and emerging opportunities to activate immunity (Review)
- Authors:
- Sadek Malas
- Micaela Harrasser
- Katie E. Lacy
- Sophia N. Karagiannis
-
Affiliations: St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine and NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals, King's College London, London SE1 9RT, UK - Published online on: June 20, 2014 https://doi.org/10.3892/or.2014.3275
- Pages: 875-886
This article is mentioned in:
Abstract
Balch CM, Gershenwald JE, Soong SJ, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gerner RE, Moore GE and Dickey C: Combination chemotherapy in disseminated melanoma and other solid tumors in adults. Oncology. 31:22–30. 1975. View Article : Google Scholar : PubMed/NCBI | |
Atkins MB: Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res. 12:2353s–2358s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ballantyne AD and Garnock-Jones KP: Dabrafenib: first global approval. Drugs. 73:1367–1376. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bollag G, Tsai J, Zhang J, et al: Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 11:873–886. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wright CJ and McCormack PL: Trametinib: first global approval. Drugs. 73:1245–1254. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sznol M: Advances in the treatment of metastatic melanoma: new immunomodulatory agents. Semin Oncol. 39:192–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oble DA, Loewe R, Yu P and Mihm MC Jr: Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun. 9:32009.PubMed/NCBI | |
Shimanovsky A, Jethava A and Dasanu CA: Immune alterations in malignant melanoma and current immunotherapy concepts. Expert Opin Biol Ther. 13:1413–1427. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cipponi A, Mercier M, Seremet T, et al: Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72:3997–4007. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gilbert AE, Karagiannis P, Dodev T, et al: Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies. PLoS One. 6:e193302011. View Article : Google Scholar : PubMed/NCBI | |
Lacy KE, Karagiannis SN and Nestle FO: Advances in the treatment of melanoma. Clin Med. 12:168–171. 2012. View Article : Google Scholar | |
Fujimura T, Ring S, Umansky V, Mahnke K and Enk AH: Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. J Invest Dermatol. 132:1239–1246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karagiannis P, Gilbert AE, Nestle FO and Karagiannis SN: IgG4 antibodies and cancer-associated inflammation: insights into a novel mechanism of immune escape. Oncoimmunology. 2:e248892013. View Article : Google Scholar : PubMed/NCBI | |
Karagiannis P, Gilbert AE, Josephs DH, et al: IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest. 123:1457–1474. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ge Y, Xiao M, et al: Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res. 25:493–505. 2012. View Article : Google Scholar : PubMed/NCBI | |
Atkins MB, Lotze MT, Dutcher JP, et al: High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 17:2105–2116. 1999.PubMed/NCBI | |
Hauschild A: Adjuvant interferon alfa for melanoma: new evidence-based treatment recommendations? Curr Oncol. 16:3–6. 2009. View Article : Google Scholar : PubMed/NCBI | |
Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K, et al: Single-agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat Rev. 33:484–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sasse AD, Sasse EC, Clark LG, Ulloa L and Clark OA: Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst Rev. CD0054132007.PubMed/NCBI | |
Borden EC: Interferons: pleiotropic cellular modulators. Clin Immunol Immunopathol. 62:S18–24. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bart RS, Porzio NR, Kopf AW, Vilcek JT, Cheng EH and Farcet Y: Inhibition of growth of B16 murine malignant melanoma by exogenous interferon. Cancer Res. 40:614–619. 1980.PubMed/NCBI | |
Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC and Blum RH: Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 14:7–17. 1996.PubMed/NCBI | |
Wheatley K, Ives N, Hancock B, Gore M, Eggermont A and Suciu S: Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat Rev. 29:241–252. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hillner BE: Cost-effectiveness assessment of interferon alfa-2b as adjuvant therapy of high-risk resected cutaneous melanoma. Eur J Cancer. 34:S18–S21. 1998. View Article : Google Scholar : PubMed/NCBI | |
Eggermont AM, Suciu S, Santinami M, et al: Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 372:117–126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zikich D, Schachter J and Besser MJ: Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol. 14:261–272. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dannull J, Haley NR, Archer G, et al: Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest. 123:3135–3145. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Ku GY, Gallardo HF, et al: Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun. 9:52009.PubMed/NCBI | |
Reichert JM and Dhimolea E: The future of antibodies as cancer drugs. Drug Discov Today. 17:954–963. 2012. View Article : Google Scholar : PubMed/NCBI | |
Azijli K, Stelloo E, Peters GJ and van den Eertwegh AJ: New developments in the treatment of metastatic melanoma: immune checkpoint inhibitors and targeted therapies. Anticancer Res. 34:1493–1505. 2014.PubMed/NCBI | |
Price MA, Colvin Wanshura LE, Yang J, et al: CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res. 24:1148–1157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Osada T, Wang Y, et al: CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 102:1496–1512. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Price MA, Neudauer CL, et al: Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol. 165:881–891. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Price MA, Li GY, et al: Melanoma proteoglycan modifies gene expression to stimulate tumor cell motility, growth, and epithelial-to-mesenchymal transition. Cancer Res. 69:7538–7547. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chekenya M, Krakstad C, Svendsen A, et al: The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene. 27:5182–5194. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maciag PC, Seavey MM, Pan ZK, Ferrone S and Paterson Y: Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res. 68:8066–8075. 2008. View Article : Google Scholar | |
Kusama M, Kageshita T, Chen ZJ and Ferrone S: Characterization of syngeneic antiidiotypic monoclonal antibodies to murine anti-human high molecular weight melanoma-associated antigen monoclonal antibodies. J Immunol. 143:3844–3852. 1989. | |
Chen ZJ, Yang H, Kageshita T and Ferrone S: Human high-molecular-weight melanoma-associated antigen mimicry by mouse antiidiotypic monoclonal antibody TK7-371. Cancer Res. 51:4790–4797. 1991.PubMed/NCBI | |
Mittelman A, Chen ZJ, Yang H, Wong GY and Ferrone S: Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc Natl Acad Sci USA. 89:466–470. 1992. View Article : Google Scholar | |
Mittelman A, Chen GZ, Wong GY, Liu C, Hirai S and Ferrone S: Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2-23: modulation of the immunogenicity in patients with malignant melanoma. Clin Cancer Res. 1:705–713. 1995.PubMed/NCBI | |
Mittelman A, Wang X, Matsumoto K and Ferrone S: Antiantiidiotypic response and clinical course of the disease in patients with malignant melanoma immunized with mouse antiidiotypic monoclonal antibody MK2-23. Hybridoma. 14:175–181. 1995. View Article : Google Scholar | |
Murray JL, Gillogly M, Kawano K, et al: Fine specificity of high molecular weight-melanoma-associated antigen-specific cytotoxic T lymphocytes elicited by anti-idiotypic monoclonal antibodies in patients with melanoma. Cancer Res. 64:5481–5488. 2004. View Article : Google Scholar | |
Torisu-Itakura H, Schoellhammer HF, Sim MS, et al: Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells. J Immunother. 34:597–605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rybczynska AA, Dierckx RA, Ishiwata K, Elsinga PH and van Waarde A: Cytotoxicity of sigma-receptor ligands is associated with major changes of cellular metabolism and complete occupancy of the sigma-2 subpopulation. J Nucl Med. 49:2049–2056. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Bruyn M, Rybczynska AA, Wei Y, et al: Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Mol Cancer. 9:3012010. | |
Geldres C, Savoldo B, Hoyos V, et al: T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res. 20:962–971. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mehnert JM, McCarthy MM, Jilaveanu L, et al: Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol. 41:375–384. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spinella F, Caprara V, Cianfrocca R, et al: The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor. Carcinogenesis. 35:840–848. 2014. View Article : Google Scholar | |
Hsu JY and Wakelee HA: Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs. 23:289–304. 2009. View Article : Google Scholar : PubMed/NCBI | |
Molhoek KR, Griesemann H, Shu J, Gershenwald JE, Brautigan DL and Slingluff CL Jr: Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res. 68:4392–4397. 2008. View Article : Google Scholar | |
Del Vecchio M, Mortarini R, Canova S, et al: Bevacizumab plus fotemustine as first-line treatment in metastatic melanoma patients: clinical activity and modulation of angiogenesis and lymphangiogenesis factors. Clin Cancer Res. 16:5862–5872. 2010.PubMed/NCBI | |
Varker KA, Biber JE, Kefauver C, et al: A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma. Ann Surg Oncol. 14:2367–2376. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guenterberg KD, Grignol VP, Relekar KV, et al: A pilot study of bevacizumab and interferon-alpha2b in ocular melanoma. Am J Clin Oncol. 34:87–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
Corrie PG, Marshall A, Dunn JA, et al: Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 15:620–630. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP and Rosenberg SA: Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70:6171–6180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perez DG, Suman VJ, Fitch TR, et al: Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A. Cancer. 115:119–127. 2009. View Article : Google Scholar | |
Perez EA, Hillman DW, Dentchev T, et al: North Central Cancer Treatment Group (NCCTG) N0432: phase II trial of docetaxel with capecitabine and bevacizumab as first-line chemotherapy for patients with metastatic breast cancer. Ann Oncol. 21:269–274. 2010. View Article : Google Scholar | |
Allison JP, Chambers C, Hurwitz A, et al: A role for CTLA-4 mediated inhibitory signals in peripheral T cell tolerance? Novartis Found Symp. 215:92–98. 1998.PubMed/NCBI | |
Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK and Ledbetter JA: CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 174:561–569. 1991. View Article : Google Scholar : PubMed/NCBI | |
Simpson TR, Li F, Montalvo-Ortiz W, et al: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 210:1695–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bulliard Y, Jolicoeur R, Windman M, et al: Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med. 210:1685–1693. 2013. | |
Friedline RH, Brown DS, Nguyen H, et al: CD4+regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 206:421–434. 2009.PubMed/NCBI | |
Phan GQ, Yang JC, Sherry RM, et al: Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 100:8372–8377. 2003. View Article : Google Scholar : PubMed/NCBI | |
Weber JS, O’Day S, Urba W, et al: Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol. 26:5950–5956. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Camacho LH, Lopez-Berestein G, et al: Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol. 23:8968–8977. 2005. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Thomas L, Bondarenko I, et al: Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hersh EM, O’Day SJ, Powderly J, et al: A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs. 29:489–498. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hodi FS, O’Day SJ, McDermott DF, et al: Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med. 363:711–723. 2010. View Article : Google Scholar | |
Callahan MK, Postow MA and Wolchok JD: Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol. 31:191–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Callahan MK and Wolchok JD: The antitumor immunity of ipilimumab: (T-cell) memories to last a lifetime? Clin Cancer Res. 18:1821–1823. 2012. View Article : Google Scholar : PubMed/NCBI | |
Della Vittoria Scarpati G, Fusciello C, Perri F, et al: Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther. 7:203–209. 2014.PubMed/NCBI | |
Ribas A, Kefford R, Marshall MA, et al: Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 31:616–622. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hino R, Kabashima K, Kato Y, et al: Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 116:1757–1766. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ahmadzadeh M, Johnson LA, Heemskerk B, et al: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Drake CG, Wollner I, et al: Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 28:3167–3175. 2010. View Article : Google Scholar | |
Topalian SL, Sznol M, McDermott DF, et al: Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lipson EJ, Sharfman WH, Drake CG, et al: Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 19:462–468. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamid O, Robert C, Daud A, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Tykodi SS, Chow LQ, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Ahmadzadeh M, Lu YC, et al: Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood. 119:5688–5696. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Panfilis G, Campanini N, Santini M, et al: Phase- and stage-related proportions of T cells bearing the transcription factor FOXP3 infiltrate primary melanoma. J Invest Dermatol. 128:676–684. 2008.PubMed/NCBI | |
Miracco C, Mourmouras V, Biagioli M, et al: Utility of tumour-infiltrating CD25+FOXP3+regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep. 18:1115–1122. 2007.PubMed/NCBI | |
Agius E, Lacy KE, Vukmanovic-Stejic M, et al: Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+T cells during aging. J Exp Med. 206:1929–1940. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jacobs JF, Punt CJ, Lesterhuis WJ, et al: Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase III study in metastatic melanoma patients. Clin Cancer Res. 16:5067–5078. 2010. View Article : Google Scholar : PubMed/NCBI | |
Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wolchok JD, Kluger H, Callahan MK, et al: Nivolumab plus ipilimumab in advanced melanoma. New Engl J Med. 369:122–133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ly LV, Sluijter M, van der Burg SH, Jager MJ and van Hall T: Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. J Immunol. 190:489–496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alderson KL, Luangrath M, Elsenheimer MM, et al: Enhancement of the anti-melanoma response of Hu14.18K322A by αCD40 + CpG. Cancer Immunol Immunother. 62:665–675. 2013.PubMed/NCBI | |
Flaherty KT: Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clin Exp Metastasis. 29:841–846. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chapman PB, Hauschild A, Robert C, et al: Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (vem) with dacarbazine (DTIC) in previously untreated patients with BRAFV600E-mutated melanoma. J Clin Oncol. 85022012. | |
Hauschild A, Grob JJ, Demidov LV, et al: Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 380:358–365. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knight DA, Ngiow SF, Li M, et al: Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest. 123:1371–1381. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ngiow SF, Knight DA, Ribas A, McArthur GA and Smyth MJ: BRAF-targeted therapy and immune responses to melanoma. Oncoimmunology. 2:e244622013. View Article : Google Scholar : PubMed/NCBI | |
Ascierto PA, Simeone E, Giannarelli D, Grimaldi AM, Romano A and Mozzillo N: Sequencing of BRAF inhibitors and ipilimumab in patients with metastatic melanoma: a possible algorithm for clinical use. J Transl Med. 10:1072012. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Hodi FS, Callahan M, Konto C and Wolchok J: Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 368:1365–1366. 2013. View Article : Google Scholar : PubMed/NCBI | |
Culos KA and Cuellar S: Novel targets in the treatment of advanced melanoma: new first-line treatment options. Ann Pharmacother. 47:519–526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Woof JM: Insights from Fc receptor biology: a route to improved antibody reagents. MAbs. 4:291–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bossi G, Buisson S, Oates J, Jakobsen BK and Hassan NJ: ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells. Cancer Immunol Immunother. 63:437–448. 2014. View Article : Google Scholar : PubMed/NCBI | |
McCormack E, Adams KJ, Hassan NJ, et al: Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol Immunother. 62:773–785. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karagiannis SN, Josephs DH, Karagiannis P, et al: Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother. 61:1547–1564. 2012. View Article : Google Scholar : PubMed/NCBI | |
Josephs DH, Spicer JF, Karagiannis P, Gould HJ and Karagiannis SN: IgE immunotherapy: a novel concept with promise for the treatment of cancer. MAbs. 6:54–72. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boross P, Lohse S, Nederend M, et al: IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol Med. 5:1213–1226. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lohse S, Brunke C, Derer S, et al: Characterization of a mutated IgA2 antibody of the m(1) allotype against the epidermal growth factor receptor for the recruitment of monocytes and macrophages. J Biol Chem. 287:25139–25150. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lohse S, Derer S, Beyer T, et al: Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol. 186:3770–3778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peggs KS, Quezada SA, Chambers CA, Korman AJ and Allison JP: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 206:1717–1725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Silina K, Rulle U, Kalnina Z and Line A: Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother. Apr 3–2014.(Epub ahead of print). | |
Cipponi A, Wieers G, van Baren N and Coulie PG: Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? Cancer Immunol Immunother. 60:1153–1160. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsoka S, Ainali C, Karagiannis P, et al: Toward prediction of immune mechanisms and design of immunotherapies in melanoma. Crit Rev Biomed Eng. 40:279–294. 2012. View Article : Google Scholar : PubMed/NCBI |