1
|
Pichiorri F, Palmieri D, De Luca L, et al:
In vivo NCL targeting affects breast cancer aggressiveness through
miRNA regulation. J Exp Med. 210:951–968. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pizzini S, Bisognin A, Mandruzzato S, et
al: Impact of microRNAs on regulatory networks and pathways in
human colorectal carcinogenesis and development of metastasis. BMC
Genomics. 14:5892013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang J, Zhao H, Xin Y and Fan L:
MicroRNA-198 inhibits proliferation and induces apoptosis of lung
cancer cells via targeting FGFR1. J Cell Biochem. 115:987–995.
2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen L, Zhang Y, Yang J, Hagan JP and Li
M: Vertebrate animal models of glioma: understanding the mechanisms
and developing new therapies. Biochim Biophys Acta. 1836:158–165.
2013.PubMed/NCBI
|
5
|
Chou KN, Lin YC, Liu MY and Chang PY:
Temozolomide-related acute lymphoblastic leukemia with
translocation (4;11)(q21;q23) in a glioblastoma patient. J Clin
Neurosci. 21:701–704. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Danson SJ and Middleton MR: Temozolomide:
a novel oral alkylating agent. Expert Rev Anticancer Ther. 1:13–19.
2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stupp R, Gander M, Leyvraz S and Newlands
E: Current and future developments in the use of temozolomide for
the treatment of brain tumours. Lancet Oncol. 2:552–560. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wong STS, Zhang XQ, Zhuang JTF, Chan HL,
Li CH and Leung GKK: MicroRNA-21 inhibition enhances in
vitro chemosensitivity of temozolomide-resistant glioblastoma
cells. Anticancer Res. 32:2835–2841. 2012.PubMed/NCBI
|
9
|
Shi L, Chen JA, Yang JA, Pan TH, Zhang SG
and Wang ZM: MiR-21 protected human glioblastoma U87MG cells from
chemotherapeutic drug temozolomide induced apoptosis by decreasing
Bax/Bcl-2 ratio and caspase-3 activity. Brain Res. 1352:255–264.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qian XM, Ren Y, Shi ZD, et al:
Sequence-dependent synergistic inhibition of human glioma cell
lines by combined temozolomide and miR-21 inhibitor gene therapy.
Mol Pharm. 9:2636–2645. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ujifuku K, Mitsutake N, Takakura S, et al:
miR-195, miR-455–3p and miR-10a* are implicated in acquired
temozolomide resistance in glioblastoma multiforme cells. Cancer
Lett. 296:241–248. 2010.
|
12
|
Slaby O, Lakomy R, Fadrus P, et al:
MicroRNA-181 family predicts response to concomitant
chemoradiotherapy with temozolomide in glioblastoma patients.
Neoplasma. 57:264–269. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shi L, Zhang SG, Feng K, et al:
MicroRNA-125b-2 confers human glioblastoma stem cells resistance to
temozolomide through the mitochondrial pathway of apoptosis. Int J
Oncol. 40:119–129. 2012.PubMed/NCBI
|
14
|
Li D, Chen P, Li XY, et al: Grade-specific
expression profiles of miRNAs/mRNAs and docking study in human
grade I–III astrocytomas. OMICS. 15:673–682. 2011.PubMed/NCBI
|
15
|
Wittchen ES, Aghajanian A and Burridge K:
Isoform-specific differences between Rap1A and Rap1B GTPases in the
formation of endothelial cell junctions. Small GTPases. 2:65–76.
2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nuovo GJ: In situ detection of precursor
and mature microRNAs in paraffin embedded, formalin fixed tissues
and cell preparations. Methods. 44:39–46. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Evangelisti C, Florian MC, Massimi I, et
al: MiR-128 up-regulation inhibits Reelin and DCX expression and
reduces neuroblastoma cell motility and invasiveness. FASEB J.
23:4276–4287. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y, Chao T, Li R, et al: MicroRNA-128
inhibits glioma cells proliferation by targeting transcription
factor E2F3a. J Mol Med. 87:43–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Costa PM, Cardoso AL, Nobrega C, et al:
MicroRNA-21 silencing enhances the cytotoxic effect of the
antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet.
22:904–918. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Khan AP, Poisson LM, Bhat VB, et al:
Quantitative proteomic profiling of prostate cancer reveals a role
for miR-128 in prostate cancer. Mol Cell Proteomics. 9:298–312.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Weiss GJ, Bemis LT, Nakajima E, et al:
EGFR regulation by microRNA in lung cancer: correlation with
clinical response and survival to gefitinib and EGFR expression in
cell lines. Ann Oncol. 19:1053–1059. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kotani A, Ha D, Schotte D, den Boer ML,
Armstrong SA and Lodish HF: A novel mutation in the miR-128b gene
reduces miRNA processing and leads to glucocorticoid resistance of
MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle. 9:1037–1042.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu Y, Yu F, Jiao Y, et al: Reduced
miR-128 in breast tumor-initiating cells induces chemotherapeutic
resistance via Bmi-1 and ABCC5. Clin Cancer Res. 17:7105–7115.
2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shi ZM, Wang J, Yan Z, et al: miR-128
inhibits tumor growth and angiogenesis by targeting p70S6K1. PLoS
One. 7:e327092012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin RJ, Lin YC and Yu AL:
miR-149* induces apoptosis by inhibiting Akt1 and E2F1
in human cancer cells. Mol Carcinog. 49:719–727. 2010.PubMed/NCBI
|
26
|
Jin L, Hu WL, Jiang CC, et al:
MicroRNA-149*, a p53-responsive microRNA, functions as
an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA.
108:15840–15845. 2011.PubMed/NCBI
|
27
|
Wang Y, Zheng XS, Zhang ZY, et al:
MicroRNA-149 inhibits proliferation and cell cycle progression
through the targeting of ZBTB2 in human gastric cancer. PLoS One.
7:e416932012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tu HF, Liu CJ, Chang CL, et al: The
association between genetic polymorphism and the processing
efficiency of miR-149 affects the prognosis of patients with head
and neck squamous cell carcinoma. PLoS One. 7:e516062012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Pan SJ, Zhan SK, Pei BG, Sun QF, Bian LG
and Sun BM: MicroRNA-149 inhibits proliferation and invasion of
glioma cells via blockade of AKT1 signaling. Int J Immunopathol
Pharmacol. 25:871–881. 2012.PubMed/NCBI
|
30
|
Tang HL, Wang ZY, Liu XP, et al: LRRC4
inhibits glioma cell growth and invasion through a
miR-185-dependent pathway. Curr Cancer Drug Targets. 12:1032–1042.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guo Y, Yan KP, Fang JS, Qu Q, Zhou M and
Chen FH: Let-7b expression determines response to chemotherapy
through the regulation of cyclin D1 in glioblastoma. J Exp Clin
Cancer Res. 32:412013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pellegrino L, Stebbing J, Braga VM, et al:
miR-23b regulates cytoskeletal remodeling, motility and metastasis
by directly targeting multiple transcripts. Nucleic Acids Res.
41:5400–5412. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Avellino R, Carrella S, Pirozzi M, et al:
miR-204 targeting of Ankrd13A controls both mesenchymal neural
crest and lens cell migration. PLoS One. 8:e610992013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bockhorn J, Yee K, Chang YF, et al:
MicroRNA-30c targets cytoskeleton genes involved in breast cancer
cell invasion. Breast Cancer Res Treat. 137:373–382. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Bertoni A, Tadokoro S, Eto K, et al:
Relationships between Rap1b, affinity modulation of integrin
αIIbβ3, and the actin cytoskeleton. J Biol Chem. 277:25715–25721.
2002.PubMed/NCBI
|
36
|
Malchinkhuu E, Sato K, Maehama T, et al:
Role of Rap1B and tumor suppressor PTEN in the negative regulation
of lysophosphatidic acid-induced migration by isoproterenol in
glioma cells. Mol Biol Cell. 20:5156–5165. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vega FM and Ridley AJ: Rho GTPases in
cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
de Toledo M, Anguille C, Roger L, Roux P
and Gadea G: Cooperative anti-invasive effect of Cdc42/Rac1
activation and ROCK inhibition in SW620 colorectal cancer cells
with elevated blebbing activity. PLoS One. 7:e483442012.PubMed/NCBI
|
39
|
Feng H, Hu B, Liu KW, et al: Activation of
Rac1 by Src-dependent phosphorylation of Dock180Y1811
mediates PDGFRα-stimulated glioma tumorigenesis in mice and humans.
J Clin Invest. 121:4670–4684. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fortin Ensign SP, Mathews IT, Eschbacher
JM, Loftus JC, Symons MH and Tran NL: The Src homology 3
domain-containing guanine nucleotide exchange factor is
overexpressed in high-grade gliomas and promotes tumor necrosis
factor-like weak inducer of apoptosis-fibroblast growth
factor-inducible 14-induced cell migration and invasion via tumor
necrosis factor receptor-associated factor 2. J Biol Chem.
288:21887–21897. 2013.
|