1
|
Hamilton MJ, Ho VW, Kuroda E, et al: Role
of SHIP in cancer. Exp Hematol. 39:2–13. 2011. View Article : Google Scholar
|
2
|
Conde C, Gloire G and Piette J: Enzymatic
and non-enzymatic activities of SHIP-1 in signal transduction and
cancer. Biochem Pharmacol. 82:1320–1334. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Costinean S, Sandhu SK, Pedersen IM, et
al: Src homology 2 domain-containing inositol-5-phosphatase and
CCAAT enhancer-binding protein beta are targeted by miR-155 in B
cells of Emicro-MiR-155 transgenic mice. Blood. 114:1374–1382.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kennah M, Yau TY, Nodwell M, et al:
Activation of SHIP via a small molecule agonist kills multiple
myeloma cells. Exp Hematol. 37:1274–1283. 2009. View Article : Google Scholar
|
5
|
Lo TC, Barnhill LM, Kim Y, Nakae EA, Yu AL
and Diccianni MB: Inactivation of SHIP1 in T-cell acute
lymphoblastic leukemia due to mutation and extensive alternative
splicing. Leuk Res. 33:1562–1566. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luo JM, Yoshida H, Komura S, et al:
Possible dominant-negative mutation of the SHIP gene in acute
myeloid leukemia. Leukemia. 17:1–8. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gilby DC, Goodeve AC, Winship PR, Valk PJ,
Delwel R and Reilly JT: Gene structure, expression profiling and
mutation analysis of the tumour suppressor SHIP1 in Caucasian acute
myeloid leukaemia. Leukemia. 21:2390–2393. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
O’Connell RM, Zhao JL and Rao DS: MicroRNA
function in myeloid biology. Blood. 118:2960–2969. 2011.
|
9
|
Teng G and Papavasiliou FN: Shhh!
Silencing by microRNA-155. Philos Trans R Soc Lond B Biol Sci.
364:631–637. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tili E, Croce CM and Michaille JJ:
miR-155: on the crosstalk between inflammation and cancer. Int Rev
Immunol. 28:264–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
O’Connell RM, Chaudhuri AA, Rao DS and
Baltimore D: Inositol phosphatase SHIP1 is a primary target of
miR-155. Proc Natl Acad Sci USA. 106:7113–7118. 2009.PubMed/NCBI
|
12
|
Schwind S, Maharry K, Radmacher MD, et al:
Prognostic significance of expression of a single microRNA,
miR-181a, in cytogenetically normal acute myeloid leukemia: a
Cancer and Leukemia Group B study. J Clin Oncol. 28:5257–5264.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pedersen IM, Otero D, Kao E, et al:
Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of
B cell lymphomas. EMBO Mol Med. 1:288–295. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamanaka Y, Tagawa H, Takahashi N, et al:
Aberrant overexpression of microRNAs activate AKT signaling via
down-regulation of tumor suppressors in natural killer-cell
lymphoma/leukemia. Blood. 114:3265–3275. 2009. View Article : Google Scholar
|
15
|
Metzner A, Precht C, Fehse B, et al:
Reduced proliferation of CD34(+) cells from patients with acute
myeloid leukemia after gene transfer of INPP5D. Gene Ther.
16:570–573. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
O’Connell RM, Rao DS, Chaudhuri AA, et al:
Sustained expression of microRNA-155 in hematopoietic stem cells
causes a myeloproliferative disorder. J Exp Med. 205:585–594.
2008.PubMed/NCBI
|
17
|
Sayed D and Abdellatif M: AKT-ing via
microRNA. Cell Cycle. 9:3213–3217. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Volinia S, Galasso M, Costinean S, et al:
Reprogramming of miRNA networks in cancer and leukemia. Genome Res.
20:589–599. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhi F, Cao X, Xie X, et al: Identification
of circulating microRNAs as potential biomarkers for detecting
acute myeloid leukemia. PLoS One. 8:e567182013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vasilatou D, Papageorgiou S, Pappa V,
Papageorgiou E and Dervenoulas J: The role of microRNAs in normal
and malignant hematopoiesis. Eur J Haematol. 84:1–16. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Faraoni I, Antonetti FR, Cardone J and
Bonmassar E: miR-155 gene: a typical multifunctional microRNA.
Biochim Biophys Acta. 1792:497–505. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang Y, Li Z, He C, et al: MicroRNAs
expression signatures are associated with lineage and survival in
acute leukemias. Blood Cells Mol Dis. 44:191–197. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yuan Y, Kasar S, Underbayev C, Prakash S
and Raveche E: MicroRNAs in acute myeloid leukemia and other blood
disorders. Leuk Res Treatment. 2012:6038302012.PubMed/NCBI
|
24
|
Lawrie CH: MicroRNAs and haematology:
small molecules, big function. Br J Haematol. 137:503–512. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Debernardi S, Skoulakis S, Molloy G,
Chaplin T, Dixon-McIver A and Young BD: MicroRNA miR-181a
correlates with morphological sub-class of acute myeloid leukaemia
and the expression of its target genes in global genome-wide
analysis. Leukemia. 21:912–916. 2007.PubMed/NCBI
|
26
|
Hyde RK and Liu PP: The role of microRNAs
in acute myeloid leukemia. F1000 Biol Rep. 2:812010.PubMed/NCBI
|
27
|
Joyce CE and Novina CD: miR-155 in acute
myeloid leukemia: not merely a prognostic marker? J Clin Oncol.
31:2219–2221. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Baran CP, Tridandapani S, Helgason CD,
Humphries RK, Krystal G and Marsh CB: The inositol 5′-phosphatase
SHIP-1 and the Src kinase Lyn negatively regulate macrophage
colony-stimulating factor-induced Akt activity. J Biol Chem.
278:38628–38636. 2003.
|
29
|
Blunt MD and Ward SG: Targeting PI3K
isoforms and SHIP in the immune system: new therapeutics for
inflammation and leukemia. Curr Opin Pharmacol. 12:444–451. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ong CJ, Ming-Lum A, Nodwell M, et al:
Small-molecule agonists of SHIP1 inhibit the phosphoinositide
3-kinase pathway in hematopoietic cells. Blood. 110:1942–1949.
2007. View Article : Google Scholar : PubMed/NCBI
|