1
|
Vincent A, Herman J, Schulick R, Hruban RH
and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011.
View Article : Google Scholar
|
2
|
Kleeff J, Michalski CW, Friess H and
Büchler MW: Surgical treatment of pancreatic cancer: the role of
adjuvant and multimodal therapies. Eur J Surg Oncol. 33:817–823.
2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Burris HA III, Moore MJ, Andersen J, et
al: Improvements in survival and clinical benefit with gemcitabine
as first-line therapy for patients with advanced pancreas cancer: a
randomized trial. J Clin Oncol. 15:2403–2413. 1997.PubMed/NCBI
|
4
|
Poplin E, Feng Y, Berlin J, et al: Phase
III, randomized study of gemcitabine and oxaliplatin versus
gemcitabine (fixed-dose rate infusion) compared with gemcitabine
(30-minute infusion) in patients with pancreatic carcinoma E6201: a
trial of the Eastern Cooperative Oncology Group. J Clin Oncol.
27:3778–3785. 2009. View Article : Google Scholar
|
5
|
Heinemann V, Quietzsch D, Gieseler F, et
al: Randomized phase III trial of gemcitabine plus cisplatin
compared with gemcitabine alone in advanced pancreatic cancer. J
Clin Oncol. 24:3946–3952. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Conroy T, Desseigne F, Ychou M, et al:
FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N
Engl J Med. 364:1817–1825. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schneider G and Schmid RM: Genetic
alterations in pancreatic carcinoma. Mol Cancer. 2:152003.
View Article : Google Scholar
|
8
|
Hezel AF, Kimmelman AC, Stanger BZ,
Bardeesy N and Depinho RA: Genetics and biology of pancreatic
ductal adenocarcinoma. Genes Dev. 20:1218–1249. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chiu J and Yau T: Metastatic pancreatic
cancer: are we making progress in treatment? Gastroenterol Res
Pract. 2012:8989312012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mendell JT and Olson EN: MicroRNAs in
stress signaling and human disease. Cell. 148:1172–1187. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Winter J, Jung S, Keller S, Gregory RI and
Diederichs S: Many roads to maturity: microRNA biogenesis pathways
and their regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lujambio A and Lowe SW: The microcosmos of
cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Drakaki A and Iliopoulos D: MicroRNA-gene
signaling pathways in pancreatic cancer. Biomed J. 36:200–208.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hou B, Jian Z, Chen S, et al: Expression
of miR-216a in pancreatic cancer and its clinical significance. Nan
Fang Yi Ke Da Xue Xue Bao. 32:1628–1631. 2012.(In Chinese).
|
16
|
Link A, Becker V, Goel A, Wex T and
Malfertheiner P: Feasibility of fecal microRNAs as novel biomarkers
for pancreatic cancer. PLoS One. 7:e429332012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yu J, Li A, Hong SM, Hruban RH and Goggins
M: MicroRNA alterations of pancreatic intraepithelial neoplasias.
Clin Cancer Res. 18:981–992. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Scholz A, Heinze S, Detjen KM, et al:
Activated signal transducer and activator of transcription 3
(STAT3) supports the malignant phenotype of human pancreatic
cancer. Gastroenterology. 125:891–905. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhong Z, Wen Z and Darnell JE Jr: Stat3: a
STAT family member activated by tyrosine phosphorylation in
response to epidermal growth factor and interleukin-6. Science.
264:95–98. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shuai K, Horvath CM, Huang LH, et al:
Interferon activation of the transcription factor Stat91 involves
dimerization through SH2-phosphotyrosyl peptide interactions. Cell.
76:821–828. 1994. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chan KS, Sano S, Kiguchi K, et al:
Disruption of Stat3 reveals a critical role in both the initiation
and the promotion stages of epithelial carcinogenesis. J Clin
Invest. 114:720–728. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang T, Niu G, Kortylewski M, et al:
Regulation of the innate and adaptive immune responses by Stat-3
signaling in tumor cells. Nat Med. 10:48–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Frank DA: STAT3 as a central mediator of
neoplastic cellular transformation. Cancer Lett. 251:199–210. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kumar C, Purandare AV, Lee FY and Lorenzi
MV: Kinase drug discovery approaches in chronic myeloproliferative
disorders. Oncogene. 28:2305–2313. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ali S, Banerjee S, Logna F, et al:
Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs
in K-Ras transgenic mouse model of pancreatic cancer. J Cell
Physiol. 227:3373–3380. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jeyapalan Z, Deng Z, Shatseva T, et al:
Expression of CD44 3′-untranslated region regulates endogenous
microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids
Res. 39:3026–3041. 2011.
|
28
|
Kato M, Putta S, Wang M, et al: TGF-β
activates Akt kinase through a microRNA-dependent amplifying
circuit targeting PTEN. Nat Cell Biol. 11:881–889. 2009.
|
29
|
Kato M, Wang L, Putta S, et al:
Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of
miR-216a, mediates TGF-β-induced collagen expression in kidney
cells. J Biol Chem. 285:34004–34015. 2010.PubMed/NCBI
|
30
|
Chen PJ, Yeh SH, Liu WH, et al: Androgen
pathway stimulates microRNA-216a transcription to suppress the
tumor suppressor in lung cancer-1 gene in early
hepatocarcinogenesis. Hepatology. 56:632–643. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Usborne AL, Smith AT, Engle SK, et al:
Biomarkers of exocrine pancreatic injury in 2 rat acute
pancreatitis models. Toxicol Pathol. 42:195–203. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Blenkiron C, Askelund KJ, Shanbhag ST, et
al: MicroRNAs in mesenteric lymph and plasma during acute
pancreatitis. Ann Surg. Feb 6–2014.(Epub ahead of print).
|
33
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: a leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Gabler K, Behrmann I and Haan C: JAK2
mutants (e.g, JAK2V617F) and their importance as drug targets in
myeloproliferative neoplasms. JAKSTAT. 2:e250252013.PubMed/NCBI
|
35
|
Miao L, Liu K, Xie M, Xing Y and Xi T:
miR-375 inhibits Helicobacter pylori-induced gastric
carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol
Immunother. 63:699–711. 2014.
|
36
|
Corcoran RB, Contino G, Deshpande V, et
al: STAT3 plays a critical role in KRAS-induced
pancreatic tumorigenesis. Cancer Res. 71:5020–5029. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Miyatsuka T, Kaneto H, Shiraiwa T, et al:
Persistent expression of PDX-1 in the pancreas causes
acinar-to-ductal metaplasia through Stat3 activation. Genes Dev.
20:1435–1440. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee JK, Edderkaoui M, Truong P, et al:
NADPH oxidase promotes pancreatic cancer cell survival via
inhibiting JAK2 dephosphorylation by tyrosine phosphatases.
Gastroenterology. 133:1637–1648. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Palagani V, Bozko P, El Khatib M, et al:
Combined inhibition of Notch and JAK/STAT is superior to
monotherapies and impairs pancreatic cancer progression.
Carcinogenesis. 35:859–866. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Butturini E, Carcereri de Prati A,
Chiavegato G, et al: Mild oxidative stress induces
S-glutathionylation of STAT3 and enhances chemosensitivity of
tumoural cells to chemotherapeutic drugs. Free Radic Biol Med.
65:1322–1330. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim JK, Kim JY, Kim HJ, et al: Scoparone
exerts anti-tumor activity against DU145 prostate cancer cells via
inhibition of STAT3 activity. PLoS One. 8:e803912013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ørom UA, Kauppinen S and Lund AH:
LNA-modified oligo-nucleotides mediate specific inhibition of
microRNA function. Gene. 372:137–141. 2006.PubMed/NCBI
|
43
|
Lahdaoui F, Delpu Y, Vincent A, et al:
miR-219-1-3p is a negative regulator of the mucin MUC4 expression
and is a tumor suppressor in pancreatic cancer. Oncogene. 0:1–9.
2014.PubMed/NCBI
|
44
|
Zhao G, Wang B, Liu Y, et al: miRNA-141,
downregulated in pancreatic cancer, inhibits cell proliferation and
invasion by directly targeting MAP4K4. Mol Cancer Ther.
12:2569–2580. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Miao L, Xiong X, Lin Y, et al: miR-203
inhibits tumor cell migration and invasion via caveolin-1 in
pancreatic cancer cells. Oncol Lett. 7:658–662. 2014.PubMed/NCBI
|
46
|
Huang F, Tang J, Zhuang X, et al: MiR-196a
promotes pancreatic cancer progression by targeting nuclear factor
kappa-B-inhibitor alpha. PLoS One. 9:e878972014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Patel K, Kollory A, Takashima A, et al:
MicroRNA let-7 down-regulates STAT3 phosphorylation in pancreatic
cancer cells by increasing SOCS3 expression. Cancer Lett.
347:54–64. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song S, Zhou J, He S, et al: Expression
levels of microRNA-375 in pancreatic cancer. Biomed Rep. 1:393–398.
2013.PubMed/NCBI
|
49
|
Menghini R, Casagrande V, Marino A, et al:
MiR-216a: a link between endothelial dysfunction and autophagy.
Cell Death Dis. 5:e10292014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yang S, Wang X, Contino G, et al:
Pancreatic cancers require autophagy for tumor growth. Genes Dev.
25:717–729. 2011. View Article : Google Scholar : PubMed/NCBI
|