CLC-3 channels in cancer (Review)
- Authors:
- Sen Hong
- Miaomiao Bi
- Lei Wang
- Zhenhua Kang
- Limian Ling
- Chunyan Zhao
-
Affiliations: Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China, Department of Ophthalmology, The China‑Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, P.R. China, Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China - Published online on: November 21, 2014 https://doi.org/10.3892/or.2014.3615
- Pages: 507-514
This article is mentioned in:
Abstract
![]() |
Marban E: Cardiac channelopathies. Nature. 415:213–218. 2002. View Article : Google Scholar : PubMed/NCBI | |
Platt D and Griggs R: Skeletal muscle channelopathies: new insights into the periodic paralyses and nondystrophic myotonias. Curr Opin Neurol. 22:524–531. 2009. View Article : Google Scholar : PubMed/NCBI | |
Catterall WA, Dib-Hajj S, Meisler MH and Pietrobon D: Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci. 28:11768–11777. 2008. View Article : Google Scholar : PubMed/NCBI | |
Planells-Cases R and Jentsch TJ: Chloride channelopathies. Biochim Biophys Acta. 1792:173–189. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rolim AL, Lindsey SC, Kunii IS, et al: Ion channelopathies in endocrinology: recent genetic findings and pathophysiological insights. Arq Bras Endocrinol Metabol. 54:673–681. 2010. View Article : Google Scholar | |
Lehen’kyi V, Shapovalov G, Skryma R and Prevarskaya N: Ion channels and transporters in cancer. 5 Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol. 301:C1281–C1289. 2011. View Article : Google Scholar | |
Kunzelmann K: Ion channels and cancer. J Membr Biol. 205:159–173. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann EK and Lambert IH: Ion channels and transporters in the development of drug resistance in cancer cells. Philos Trans R Soc Lond B Biol Sci. 369:201301092014. View Article : Google Scholar : PubMed/NCBI | |
Lang F and Stournaras C: Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci. 369:201301082014. View Article : Google Scholar : PubMed/NCBI | |
Li M and Xiong ZG: Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol. 3:156–166. 2011.PubMed/NCBI | |
Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S and Becchetti A: Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem. 16:66–93. 2009. View Article : Google Scholar : PubMed/NCBI | |
Conti M: Targeting ion channels for new strategies in cancer diagnosis and therapy. Curr Clin Pharmacol. 2:135–144. 2007. View Article : Google Scholar | |
Bortner CD and Cidlowski JA: Ion channels and apoptosis in cancer. Philos Trans R Soc Lond B Biol Sci. 369:201301042014. View Article : Google Scholar : PubMed/NCBI | |
Becchetti A, Munaron L and Arcangeli A: The role of ion channels and transporters in cell proliferation and cancer. Front Physiol. 4:3122013. View Article : Google Scholar : PubMed/NCBI | |
Prevarskaya N, Skryma R, Bidaux G, Flourakis M and Shuba Y: Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ. 14:1295–1304. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Foller M, Lang KS, et al: Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 205:147–157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lang F, Foller M, Lang K, et al: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 428:209–225. 2007. View Article : Google Scholar : PubMed/NCBI | |
Urrego D, Tomczak AP, Zahed F, Stuhmer W and Pardo LA: Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci. 369:201300942014. View Article : Google Scholar : PubMed/NCBI | |
Blackiston DJ, McLaughlin KA and Levin M: Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle. 8:3527–3536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abdul M and Hoosein N: Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 186:99–105. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nilius B, Eggermont J, Voets T and Droogmans G: Volume-activated Cl− channels. Gen Pharmacol. 27:1131–1140. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shen MR, Yang TP and Tang MJ: A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca(2+) entry and Cl(−) channel activity. J Biol Chem. 277:15592–15599. 2002. View Article : Google Scholar : PubMed/NCBI | |
Duan DD: The CLC-3 chloride channels in cardiovascular disease. Acta Pharmacol Sin. 32:675–684. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Chen L, Xu B, et al: Suppression of CLC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol. 75:1706–1716. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lemonnier L, Shuba Y, Crepin A, et al: Bcl-2-dependent modulation of swelling-activated Cl− current and CLC-3 expression in human prostate cancer epithelial cells. Cancer Res. 64:4841–4848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Habela CW, Olsen ML and Sontheimer H: CLC3 is a critical regulator of the cell cycle in normal and malignant glial cells. J Neurosci. 28:9205–9217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang GX, Hatton WJ, Wang GL, et al: Functional effects of novel anti-CLC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am J Physiol Heart Circ Physiol. 285:H1453–H1463. 2003.PubMed/NCBI | |
Do CW, Lu W, Mitchell CH and Civan MM: Inhibition of swelling-activated Cl− currents by functional anti-CLC-3 antibody in native bovine non-pigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci. 46:948–955. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhou JG, Ren JL, Qiu QY, He H and Guan YY: Regulation of intracellular CI− concentration through volume-regulated CLC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem. 280:7301–7308. 2005. View Article : Google Scholar | |
Duran C, Thompson CH, Xiao Q and Hartzell HC: Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol. 72:95–121. 2010. View Article : Google Scholar : | |
Guzman RE, Grieschat M, Fahlke C and Alekov AK: CLC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance. ACS Chem Neurosci. 4:994–1003. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scheel O, Zdebik AA, Lourdel S and Jentsch TJ: Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature. 436:424–427. 2005. View Article : Google Scholar : PubMed/NCBI | |
Picollo A and Pusch M: Chloride/proton antiporter activity of mammalian CLC proteins CLC-4 and CLC-5. Nature. 436:420–423. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S and Verkman AS: CLC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem. 280:1241–1247. 2005. View Article : Google Scholar | |
Rajagopal A and Simon SM: Subcellular localization and activity of multidrug resistance proteins. Mol Biol Cell. 14:3389–3399. 2003. View Article : Google Scholar : PubMed/NCBI | |
Weylandt KH, Nebrig M, Jansen-Rosseck N, et al: CLC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment. Mol Cancer Ther. 6:979–986. 2007. View Article : Google Scholar : PubMed/NCBI | |
Su J, Xu Y, Zhou L, et al: Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec (Hoboken). 296:595–603. 2013. View Article : Google Scholar | |
Xu Y, Zheng H, Kang JS, et al: 5-Nitro-2-(3-phenylpropylamino) benzoic acid induced drug resistance to cisplatin in human erythroleukemia cell lines. Anat Rec (Hoboken). 294:945–952. 2011. View Article : Google Scholar | |
Xu B, Mao J, Wang L, et al: CLC-3 chloride channels are essential for cell proliferation and cell cycle progression in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 42:370–380. 2010. View Article : Google Scholar | |
Zhang H, Zhu L, Zuo W, et al: The CLC-3 chloride channel protein is a downstream target of cyclin D1 in nasopharyngeal carcinoma cells. Int J Biochem Cell Biol. 45:672–683. 2013. View Article : Google Scholar | |
Sontheimer H: An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 233:779–791. 2008. View Article : Google Scholar | |
Wang L, Ma W, Zhu L, et al: CLC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol. 303:C14–C23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wu DB and Wang J: Effects of volume-activated chloride channels on the invasion and migration of human endometrial cancer cells. Eur J Gynaecol Oncol. 34:60–64. 2013.PubMed/NCBI | |
Wen PY and Kesari S: Malignant gliomas in adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lui VC, Lung SS, Pu JK, Hung KN and Leung GK: Invasion of human glioma cells is regulated by multiple chloride channels including CLC-3. Anticancer Res. 30:4515–4524. 2010.PubMed/NCBI | |
Olsen ML, Schade S, Lyons SA, Amaral MD and Sontheimer H: Expression of voltage-gated chloride channels in human glioma cells. J Neurosci. 23:5572–5582. 2003.PubMed/NCBI | |
Jantaratnotai N and McLarnon JG: Calcium dependence of purinergic subtype P2Y1 receptor modulation of C6 glioma cell migration. Neurosci Lett. 497:80–84. 2011. View Article : Google Scholar : PubMed/NCBI | |
Montana V and Sontheimer H: Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci. 31:4858–4867. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cuddapah VA and Sontheimer H: Molecular interaction and functional regulation of CLC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J Biol Chem. 285:11188–11196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang P, Liu J, Di A, et al: Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 276:20093–20100. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cuddapah VA, Turner KL, Seifert S and Sontheimer H: Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and CLC-3. J Neurosci. 33:1427–1440. 2013. View Article : Google Scholar : PubMed/NCBI | |
Habela CW and Sontheimer H: Cytoplasmic volume condensation is an integral part of mitosis. Cell Cycle. 6:1613–1620. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cuddapah VA, Habela CW, Watkins S, Moore LS, Barclay TT and Sontheimer H: Kinase activation of CLC-3 accelerates cytoplasmic condensation during mitotic cell rounding. Am J Physiol Cell Physiol. 302:C527–C538. 2012. View Article : Google Scholar : | |
Wang LW, Chen LX and Jacob T: CLC-3 expression in the cell cycle of nasopharyngeal carcinoma cells. Sheng Li Xue Bao. 56:230–236. 2004.PubMed/NCBI | |
Ye D, Zhang HF, Zhu LY, Wang LW and Chen LX: CLC-3 siRNA inhibits regulatory volume decrease in nasopharyngeal carcinoma cells. Nan Fang Yi Ke Da Xue Xue Bao. 31:216–220. 2011.(In Chinese). PubMed/NCBI | |
Yang L, Ye D, Ye W, et al: CLC-3 Is A main component of background chloride channels activated under isotonic conditions by autocrine ATP in nasopharyngeal varcinoma cells. J Cell Physiol. 226:2516–2526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Yang H, Zuo W, et al: Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells. Biochem Pharmacol. 83:324–334. 2012. View Article : Google Scholar | |
Raghunand N, Martinez-Zaguilan R, Wright SH and Gillies RJ: pH and drug resistance. II Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem Pharmacol. 57:1047–1058. 1999. View Article : Google Scholar | |
Hoffmann EK, Lambert IH and Pedersen SF: Physiology of cell volume regulation in vertebrates. Physiol Rev. 89:193–277. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lang F: Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 26:S613–S623. 2007. View Article : Google Scholar | |
Sardini A, Amey JS, Weylandt KH, Nobles M, Valverdez MA and Higgins CF: Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta. 1618:153–162. 2003. View Article : Google Scholar | |
Wondergem R, Gong W, Monen SH, et al: Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol. 532:661–672. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nilius B, Prenen J, Kamouchi M, Viana F, Voets T and Droogmans G: Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)- and volume-activated Cl− channels in macrovascular endothelial cells. Br J Pharmacol. 121:547–555. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liang W, Huang L, Zhao D, et al: Swelling-activated Cl− currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells. J Hypertens. 32:318–330. 2014. View Article : Google Scholar | |
Shen MR, Droogmans G, Eggermont J, Voets T, Ellory JC and Nilius B: Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol. 529:385–394. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duan D, Winter C, Cowley S, Hume JR and Horowitz B: Molecular identification of a volume-regulated chloride channel. Nature. 390:417–421. 1997. View Article : Google Scholar : PubMed/NCBI | |
Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn A, Jahn R and Jentsch TJ: Disruption of CLC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron. 29:185–196. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto-Mizuma S, Wang GX, Liu LL, et al: Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3−/− mice. J Physiol. 557:439–456. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xiong D, Heyman NS, Airey J, et al: Cardiac-specific, inducible CLC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice. J Mol Cell Cardiol. 48:211–219. 2010. View Article : Google Scholar : | |
Wang GL, Wang XR, Lin MJ, He H, Lan XJ and Guan YY: Deficiency in CLC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res. 91:E28–E32. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tang YB, Liu YJ, Zhou JG, Wang GL, Qiu QY and Guan YY: Silence of CLC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells. Cell Prolif. 41:775–785. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rouzaire-Dubois B, O’Regan S and Dubois JM: Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. J Cell Physiol. 203:243–250. 2005. View Article : Google Scholar | |
Dubois JM and Rouzaire-Dubois B: The influence of cell volume changes on tumour cell proliferation. Eur Biophys J. 33:227–232. 2004. View Article : Google Scholar | |
Van der Wijk T, De Jonge HR and Tilly BC: Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. Biochem J. 343:579–586. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sadoshima J, Qiu Z, Morgan JP and Izumo S: Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J. 15:5535–5546. 1996.PubMed/NCBI | |
Modi PK, Komaravelli N, Singh N and Sharma P: Interplay between MEK-ERK signaling, cyclin D1 and cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons. Mol Biol Cell. 23:3722–3730. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cohen JD, Gard JM, Nagle RB, Dietrich JD, Monks TJ and Lau SS: ERK crosstalks with 4EBP1 to activate cyclin D1 translation during quinol-thioether-induced tuberous sclerosis renal cell carcinoma. Toxicol Sci. 124:75–87. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ravenhall C, Guida E, Harris T, Koutsoubos V and Stewart A: The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle. Br J Pharmacol. 131:17–28. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bortner CD, Hughes FM Jr and Cidlowski JA: A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem. 272:32436–32442. 1997. View Article : Google Scholar | |
Eggermont J, Trouet D, Carton I and Nilius B: Cellular function and control of volume-regulated anion channels. Cell Biochem Biophys. 35:263–274. 2001. View Article : Google Scholar | |
Pedersen SF, Hoffmann EK and Novak I: Cell volume regulation in epithelial physiology and cancer. Front Physiol. 4:2332013. View Article : Google Scholar : PubMed/NCBI | |
Stutzin A and Hoffmann EK: Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol (Oxf). 187:27–42. 2006. View Article : Google Scholar | |
Maeno E, Ishizaki Y, Kanaseki T, Hazama A and Okada Y: Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA. 97:9487–9492. 2000. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X and Takahashi N: Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol. 209:21–29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Du YH, Tang YB, et al: CLC-3 chloride channel prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through mitochondria dependent pathway. Apoptosis. 16:468–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Shao Z, Chaudhari B and Agrawal DK: Involvement of chloride channels in TGF-beta1-induced apoptosis of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 293:L1339–1347. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang HN, Zhou JG, Qiu QY, Ren JL and Guan YY: CLC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells. Apoptosis. 11:327–336. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li H, Yang L, et al: The CLC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis. Sci Rep. 3:26152013.PubMed/NCBI | |
Liu J, Zhang D, Li Y, et al: Discovery of bufadienolides as a novel class of CLC-3 chloride channel activators with antitumor activities. J Med Chem. 56:5734–5743. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Fukuchi J, Hiipakka RA, Kokontis JM and Xiang J: Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell Res. 17:531–536. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang YD, Cho H, Koo JY, et al: TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–1215. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jin NG, Kim JK, Yang DK, et al: Fundamental role of CLC-3 in volume-sensitive Cl− channel function and cell volume regulation in AGS cells. Am J Physiol Gastrointest Liver Physiol. 285:G938–948. 2003.PubMed/NCBI | |
Gomez-Varela D, Zwick-Wallasch E, Knotgen H, et al: Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res. 67:7343–7349. 2007. View Article : Google Scholar : PubMed/NCBI | |
DeBin JA and Strichartz GR: Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon. 29:1403–1408. 1991. View Article : Google Scholar : PubMed/NCBI | |
Deshane J, Garner CC and Sontheimer H: Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem. 278:4135–4144. 2003. View Article : Google Scholar | |
Qin C, He B, Dai W, et al: The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein CLC-3. Biomaterials. 35:5908–5920. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mamelak AN, Rosenfeld S, Bucholz R, et al: Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol. 24:3644–3650. 2006. View Article : Google Scholar : PubMed/NCBI | |
Newman RA, Yang P, Pawlus AD and Block KI: Cardiac glycosides as novel cancer therapeutic agents. Mol Interv. 8:36–49. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Rahman MA, Ahmed SH and Nabil ZI: In vitro cardiotoxicity and mechanism of action of the Egyptian green toad Bufo viridis skin secretions. Toxicol In Vitro. 24:480–485. 2010. View Article : Google Scholar | |
Barrueto F Jr, Kirrane BM, Cotter BW, Hoffman RS and Nelson LS: Cardioactive steroid poisoning: a comparison of plant- and animal-derived compounds. J Med Toxicol. 2:152–155. 2006. View Article : Google Scholar | |
Hu K, Zhu L, Liang H, Hu F and Feng J: Improved antitumor efficacy and reduced toxicity of liposomes containing bufadienolides. Arch Pharm Res. 34:1487–1494. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa M, Uchida S, Ezaki J, et al: CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells. 7:597–605. 2002. View Article : Google Scholar : PubMed/NCBI |