1
|
Zamecnik PC and Stephenson ML: Inhibition
of Rous sarcoma virus replication and cell transformation by a
specific oligode-oxynucleotide. Proc Natl Acad Sci USA. 75:280–284.
1978. View Article : Google Scholar
|
2
|
Warzocha K: Antisense strategy in
hematological malignancies. Cytokines Cell Mol Ther. 5:15–23.
1999.PubMed/NCBI
|
3
|
Ruden M and Puri N: Novel anticancer
therapeutics targeting telomerase. Cancer Treat Rev. 39:444–456.
2013. View Article : Google Scholar
|
4
|
Wu Y, Zhang Y, Wang M, et al:
Downregulation of HER3 by a novel antisense oligonucleotide,
EZN-3920, improves the antitumor activity of EGFR and HER2 tyrosine
kinase inhibitors in animal models. Mol Cancer Ther. 12:427–437.
2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Panyam J and Labhasetwar V: Biodegradable
nanoparticles for drug and gene delivery to cells and tissue. Adv
Drug Deliv Rev. 55:329–347. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jones SE: Metastatic breast cancer: the
treatment challenge. Clin Breast Cancer. 8:224–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Xie QC, Hu YD, Wang LL, et al: The
co-transfection of p16(INK4a) and p14(ARF) genes into human lung
cancer cell line A549 and the effects on cell growth and
chemosensitivity. Colloids Surf B Biointerfaces. 46:188–196. 2005.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Stein CA: Two problems in antisense
biotechnology: in vitro delivery and the design of antisense
experiments. Biochim Biophys Acta. 1489:45–52. 1999. View Article : Google Scholar
|
9
|
Balbino TA, Azzoni AR and de la Torre LG:
Microfluidic devices for continuous production of pDNA/cationic
liposome complexes for gene delivery and vaccine therapy. Colloid
Surf B Biointerfaces. 111:203–210. 2013. View Article : Google Scholar
|
10
|
Skoblov Mlu: Prospects of antisense
therapy technologies. Mol Biol. 43:984–998. 2009.(In Russian).
View Article : Google Scholar
|
11
|
Zhong J, Yao X, Li DL, et al: Large scale
preparation of midkine antisense oligonucleotides nanoliposomes by
a cross-flow injection technique combined with ultrafiltration and
high-pressure extrusion procedures. Int J Pharm. 441:712–720. 2013.
View Article : Google Scholar
|
12
|
Ye S, Yang W, Wang Y, et al: Cationic
liposome-mediated nitric oxide synthase gene therapy enhances the
antitumor effects of cisplatin in lung cancer. Int J Mol Med.
31:33–42. 2013.
|
13
|
Kim TI and Kim SW: Bioreducible polymers
for gene delivery. React Funct Polym. 71:344–349. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu M, Kumar D, Srinivas S, et al:
Parenteral gene therapy with p53 inhibits human breast tumors in
vivo through a bystander mechanism without evidence of toxicity.
Hum Gene Ther. 8:177–185. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakase M, Inui M, Okumura K, Kamei T,
Nakamura S and Tagawa T: p53 gene therapy of human osteosarcoma
using a transferrin-modified cationic liposome. Mol Cancer Ther.
4:625–631. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Krejcova L, Hynek D, Kopel P, et al:
Development of a magnetic electrochemical bar code array for point
mutation detection in the H5N1 neuraminidase gene. Viruses.
5:1719–1739. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kensova R, Kremplova M, Smerkova K, et al:
Interactions of platinum-based cytostatics with metallothionein
revealed by electrochemistry. Int J Electrochem Sci. 8:4472–4484.
2013.
|
18
|
Krystofova O, Sochor J, Zitka O, et al:
Effect of magnetic nanoparticles on tobacco BY-2 cell suspension
culture. Int J Environ Res Public Health. 10:47–71. 2012.
View Article : Google Scholar
|
19
|
Misra SK, Naz S, Kondaiah P and
Bhattacharya S: A cationic cholesterol based nanocarrier for the
delivery of p53-EGFP-C3 plasmid to cancer cells. Biomaterials.
35:1334–1346. 2014. View Article : Google Scholar
|
20
|
Taylor AH, Pringle JH, Bell SC and
Al-Azzawi F: Specific inhibition of estrogen receptor alpha
function by antisense oligodeoxyribonucleotides. Antisense Nucleic
Acid Drug Dev. 11:219–231. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ruyra A, Cano-Sarabia M, Mackenzie SA,
Maspoch D and Roher N: A novel liposome-based nanocarrier loaded
with an LPS-dsRNA cocktail for fish innate immune system
stimulation. PLoS One. 8:e763382013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dinu-Pirvu C, Ferdes M, Butu A, Ortan A
and Ghica MV: Physicochemical investigation of low soluble
biocompounds entrapped in lipid carriers. Farmacia. 61:182–192.
2013.
|
23
|
Lacroix M and Leclercq G: Relevance of
breast cancer cell lines as models for breast tumours: an update.
Breast Cancer Res Treat. 83:249–289. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Resende FA, de Oliveira AP, de Camargo MS,
Vilegas W and Varanda EA: Evaluation of estrogenic potential of
flavonoids using a recombinant yeast strain and MCF7/BUS cell
proliferation assay. PLoS One. 8:e748812013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu ZZ, Kagan BL, Ariazi EA, et al:
Proteomic analysis of pathways involved in estrogen-induced growth
and apoptosis of breast cancer cells. PLoS One. 6:e204102011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yakimchuk K, Jondal M and Okret S:
Estrogen receptor α and β in the normal immune system and in
lymphoid malignancies. Mol Cell Endocrinol. 375:121–129. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tu ZZ, Ma Y, Tian J, et al: Estrogen
receptor β potentiates the antiproliferative effect of raloxifene
and affects the cell migration and invasion in HCT-116 colon cancer
cells. J Cancer Res Clin Oncol. 138:1091–1103. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li H, Tu Z, An L, Qian Z, Achilefu S and
Gu Y: Inhibitory effects of ERβ on proliferation, invasion, and
tumor formation of MCF-7 breast cancer cells - prognostication for
the use of ERβ-selective therapy. Pharm Biol. 50:839–849. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hartman J, Lindberg K, Morani A, Inzunza
J, Strom A and Gustafsson JA: Estrogen receptor beta inhibits
angiogenesis and growth of T47D breast cancer xenografts. Cancer
Res. 66:11207–11213. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Costa DD, Neto FF, Costa MD, et al:
Vitellogenesis and other physiological responses induced by
17-beta-estradiol in males of freshwater fish Rhamdia quelen. Comp
Biochem Physiol C Toxicol Pharmacol. 151:248–257. 2010. View Article : Google Scholar
|
31
|
Woo S, Won H, Lee A and Yum S: Oxidative
stress and gene expression in diverse tissues of Oryzias javanicus
exposed to 17β-estradiol. Mol Cell Toxicol. 8:263–269. 2012.
View Article : Google Scholar
|
32
|
Bhat HK, Calaf G, Hei TK, Loya T and
Vadgama JV: Critical role of oxidative stress in estrogen-induced
carcinogenesis. Proc Natl Acad Sci USA. 100:3913–3918. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Li W, Jia M, Qin X, Hu J, Zhang X and Zhou
G: Harmful effect of ERβ on BCRP-mediated drug resistance and cell
proliferation in ERα/PR-negative breast cancer. FEBS J.
280:6128–6140. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Garg A and Aggarwal BB: Nuclear
transcription factor-kappaB as a target for cancer drug
development. Leukemia. 16:1053–1068. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen F, Castranova V, Shi X and Demers LM:
New insights into the role of nuclear factor-kappaB, a ubiquitous
transcription factor in the initiation of diseases. Clin Chem.
45:7–17. 1999.PubMed/NCBI
|
36
|
Kato K, Horiuchi S, Takahashi A, et al:
Contribution of estrogen receptor alpha to oncogenic K-Ras-mediated
NIH3T3 cell transformation and its implication for escape from
senescence by modulating the p53 pathway. J Biol Chem.
277:11217–11224. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tu Z, Gui L, Wang J, Li X, Sun P and Wei
L: Tumorigenesis of K-ras mutation in human endometrial carcinoma
via upregulation of estrogen receptor. Gynecol Oncol. 101:274–279.
2006. View Article : Google Scholar
|
38
|
Buache E, Etique N, Alpy F, et al:
Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of
human breast cancer cells and mammary tumor development in
TFF1-knockout mice. Oncogene. 30:3261–3273. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
May FE and Westley BR: Trefoil proteins:
their role in normal and malignant cells. J Pathol. 183:4–7. 1997.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Corte MD, Tamargo F, Alvarez A, et al:
Cytosolic levels of TFF1/pS2 in breast cancer: their relationship
with clinical-pathological parameters and their prognostic
significance. Breast Cancer Res Treat. 96:63–72. 2006. View Article : Google Scholar
|
41
|
Surowiak P, Matkowski R, Materna V, et al:
Elevated metallothionein (MT) expression in invasive ductal breast
cancers predicts tamoxifen resistance. Histol Histopathol.
20:1037–1044. 2005.PubMed/NCBI
|
42
|
Markicevic M, Petrovic A, Kanjer K,
Neskovic-Konstantinovic Z and Nikolic-Vukosavujevic D:
Estrogen-regulated cut-off values of pS2 and cathepsin D expression
in breast carcinomas. Adv Exp Med Biol. 617:341–348. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Gorrini C, Harris IS and Mak TW:
Modulation of oxidative stress as an anticancer strategy. Nat Rev
Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Traverso N, Ricciarelli R, Nitti M, et al:
Role of glutathione in cancer progression and chemoresistance. Oxid
Med Cell Longev. 2013:9729132013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hishikawa Y, Abe S, Kinugasa S, et al:
Overexpression of metallothionein correlates with chemoresistance
to cisplatin and prognosis in esophageal cancer. Oncology.
54:342–347. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Endo T, Yoshikawa M, Ebara M, et al:
Immunohistochemical metallothionein expression in hepatocellular
carcinoma: relation to tumor progression and chemoresistance to
platinum agents. J Gastroenterol. 39:1196–1201. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yap X, Tan HY, Huang J, et al:
Over-expression of metallothionein predicts chemoresistance in
breast cancer. J Pathol. 217:563–570. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kizek R, Adam V, Hrabeta J, et al:
Anthracyclines and ellipticines as DNA-damaging anticancer drugs:
recent advances. Pharmacol Ther. 133:26–39. 2012. View Article : Google Scholar
|
49
|
Klein S, Dell’Arciprete ML, Wegmann M, et
al: Oxidized silicon nanoparticles for radiosensitization of cancer
and tissue cells. Biochem Biophys Res Commun. 434:217–222. 2013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Marnett LJ: Oxy radicals, lipid
peroxidation and DNA damage. Toxicology. 181–182:219–222. 2002.
View Article : Google Scholar
|