1
|
Kobayashi E, Hornicek FJ and Duan Z:
MicroRNA involvement in osteosarcoma. Sarcoma. 2012:3597392012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Bennani-Baiti IM: Epigenetic and
epigenomic mechanisms shape sarcoma and other mesenchymal tumor
pathogenesis. Epigenomics. 3:715–732. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Geller DS and Gorlick R: Osteosarcoma: a
review of diagnosis, management, and treatment strategies. Clin Adv
Hematol Oncol. 8:705–718. 2010.
|
4
|
Maire G, Martin JW, Yoshimoto M,
Chilton-MacNeill S, Zielenska M and Squire JA: Analysis of
miRNA-gene expression-genomic profiles reveals complex mechanisms
of microRNA deregulation in osteosarcoma. Cancer Genet.
204:138–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Qian S, Ding JY, Xie R, et al: MicroRNA
expression profile of bronchioalveolar stem cells from mouse lung.
Biochem Biophys Res Commun. 377:668–673. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lin RJ, Xiao DW, Liao LD, et al:
MiR-142–3p as a potential prognostic biomarker for esophageal
squamous cell carcinoma. J Surg Oncol. 105:175–182. 2012.
View Article : Google Scholar
|
9
|
Namløs HM, Meza-Zepeda LA, Barøy T, et al:
Modulation of the osteosarcoma expression phenotype by microRNAs.
PLoS One. 7:e480862012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bid HK, Roberts RD, Manchanda PK and
Houghton PJ: RAC1: an emerging therapeutic option for targeting
cancer angiogenesis and metastasis. Mol Cancer Ther. 12:1925–1934.
2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yukinaga H, Shionyu C, Hirata E, et al:
Fluctuation of Rac1 activity is associated with the phenotypic and
transcriptional heterogeneity of glioma cells. J Cell Sci.
127:1805–1815. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang H, An F, Tang L and Qiu R: Multiple
effects of a novel epothilone analog on cellular processes and
signaling pathways regulated by Rac1 GTPase in the human breast
cancer cells. Korean J Physiol Pharmacol. 18:109–120. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen R, Fu M, Zhang G, et al: Rac1
regulates skin tumors by regulation of keratin 17 through
recruitment and interaction with CD11b+Gr1+ cells. Oncotarget.
5:4406–4417. 2014.PubMed/NCBI
|
14
|
Wu L, Cai C, Wang X, Liu M, Li X and Tang
H: MicroRNA-142-3p, a new regulator of RAC1, suppresses the
migration and invasion of hepatocellular carcinoma cells. FEBS
Lett. 585:1322–1330. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nugent M: MicroRNA function and
dysregulation in bone tumors: the evidence to date. Cancer Manag
Res. 6:15–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Miao J, Wu S, Peng Z, Tania M and Zhang C:
MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects.
Tumour Biol. 34:2093–2098. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chai S, Tong M, Ng KY, et al: Regulatory
role of miR-142-3p on the functional hepatic cancer stem cell
marker CD133. Oncotarget. 5:5725–5735. 2014.PubMed/NCBI
|
18
|
Su YH, Zhou Z, Yang KP, Wang XG, Zhu Y and
Fa XE: MIR-142-5p and miR-9 may be involved in squamous lung cancer
by regulating cell cycle related genes. Eur Rev Med Pharmacol Sci.
17:3213–3220. 2013.PubMed/NCBI
|
19
|
Dou L, Li J, Zheng D, et al:
MicroRNA-142-3p inhibits cell proliferation in human acute
lymphoblastic leukemia by targeting the MLL-AF4 oncogene. Mol Biol
Rep. 40:6811–6819. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin CW, Sun MS, Liao MY, et al:
Podocalyxin-like 1 promotes invadopodia formation and metastasis
through activation of Rac1/Cdc42/cortactin signaling in breast
cancer cells. Carcinogenesis. 35:2425–2435. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kwanhian W, Lenze D, Alles J, et al:
MicroRNA-142 is mutated in ~20% of diffuse large B-cell lymphoma.
Cancer Med. 1:141–155. 2012. View
Article : Google Scholar
|
22
|
Chen HH, Yu HI, Cho WC and Tarn WY: DDX3
modulates cell adhesion and motility and cancer cell metastasis via
Rac1-mediated signaling pathway. Oncogene. Jul 21–2014.(Epub ahead
of print). View Article : Google Scholar
|
23
|
Geng S, Zhang X, Chen J, et al: The tumor
suppressor role of miR-124 in osteosarcoma. PLoS One. 9:e915662014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lane J, Martin T, Weeks HP and Jiang WG:
Structure and role of WASP and WAVE in Rho GTPase signalling in
cancer. Cancer Genomics Proteomics. 11:155–165. 2014.PubMed/NCBI
|
25
|
Yang H, Zhang Y, Zhou Z, Jiang X and Shen
A: Transcription factor Snai1-1 induces osteosarcoma invasion and
metastasis by inhibiting E-cadherin expression. Oncol Lett.
8:193–197. 2014.PubMed/NCBI
|
26
|
Dong S, Zhao J, Wei J, et al: F-box
protein complex FBXL19 regulates TGFβ1-induced E-cadherin
downregulation by mediating Rac3 ubiquitination and degradation.
Mol Cancer. 13:762014. View Article : Google Scholar
|
27
|
Lee SJ, Jung YH, Oh SY, Yong MS, Ryu JM
and Han HJ: Netrin-1 induces MMP-12-dependent E-cadherin
degradation via the distinct activation of PKCα and FAK/Fyn in
promoting mesenchymal stem cell motility. Stem Cells Dev.
23:1870–1882. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wen X, Liu H, Yu K and Liu Y: Matrix
metalloproteinase 2 expression and survival of patients with
osteosarcoma: a meta-analysis. Tumour Biol. 35:845–848. 2014.
View Article : Google Scholar
|
29
|
Gyurkó DM, Veres DV, Módos D, Lenti K,
Korcsmáros T and Csermely P: Adaptation and learning of molecular
networks as a description of cancer development at the
systems-level: potential use in anticancer therapies. Semin Cancer
Biol. 23:262–269. 2013. View Article : Google Scholar
|