1
|
Pillai RS, Bhattacharyya SN and Filipowicz
W: Repression of protein synthesis by miRNAs: how many mechanisms?
Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Peters L and Meister G: Argonaute
proteins: mediators of RNA silencing. Mol Cell. 26:611–623. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kopnin BP: Targets of oncogenes and tumor
suppressors: key for understanding basic mechanisms of
carcinogenesis. Biochemistry. 65:2–27. 2000.PubMed/NCBI
|
4
|
Steele CW, Oien KA, McKay CJ and Jamieson
NB: Clinical potential of microRNAs in pancreatic ductal
adenocarcinoma. Pancreas. 40:1165–1171. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lujambio A, Calin GA, Villanueva A, Ropero
S, et al: A microRNA DNA methylation signature for human cancer
metastasis. Proc Natl Acad Sci USA. 105:13556–13561. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Felli N, Fontana L, Pelosi E, Botta R, et
al: MicroRNAs 221 and 222 inhibit normal erythropoiesis and
erythroleukemic cell growth via kit receptor down-modulation. Proc
Natl Acad Sci USA. 102:18081–18086. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Huang H, Sun L, Yang M, et al:
MiR-21 indicates poor prognosis in tongue squamous cell carcinomas
as an apoptosis inhibitor. Clin Cancer Res. 15:3998–4008. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dews M, Homayouni A, Yu D, Murphy D, et
al: Augmentation of tumor angiogenesis by a Myc-activated microRNA
cluster. Nat Genet. 38:1060–1065. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen CZ, Li L, Lodish HF and Bartel DP:
MicroRNAs modulate hematopoietic lineage differentiation. Science.
303:83–86. 2004. View Article : Google Scholar
|
10
|
Ma L, Young J, Prabhala H, Pan E, et al:
miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and
cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI
|
11
|
DeSantis CE, Lin CC, Mariotto AB, Siegel
RL, et al: Cancer treatment and survivorship statistics, 2014. CA
Cancer J Clin. 64:252–271. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Banno K, Nogami Y, Kisu I, Yanokura M, et
al: Candidate biomarkers for genetic and clinicopathological
diagnosis of endometrial cancer. Int J Mol Sci. 14:12123–12137.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mozos A, Catasús L, D’Angelo E, et al: The
FOXO1-miR27 tandem regulates myometrial invasion in endometrioid
endometrial adenocarcinoma. Hum Pathol. 45:942–951. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang YW, Kuo CT, Chen JH, et al:
Hypermethylation of miR-203 in endometrial carcinomas. Gynecol
Oncol. 133:340–345. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang G, Hou X, Li Y and Zhao M: MiR-205
inhibits cell apoptosis by targeting phosphatase and tensin homolog
deleted on chromosome ten in endometrial cancer Ishikawa cells. BMC
Cancer. 14:4402014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Y, Adila S, Zhang X, Dong Y, et al:
MicroRNA expression signature profile and its clinical significance
in endometrioid carcinoma. Zhonghua Bing Li xue Za Zhi. 43:88–94.
2014.In Chinese. PubMed/NCBI
|
17
|
Kong X, Xu X, Yan Y, et al: Estrogen
regulates the tumour suppressor miRNA-30c and its target gene,
MTA-1, in endometrial cancer. PLoS One. 9:e908102014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Konno Y, Dong P, Xiong Y, Suzuki F, et al:
MicroRNA-101 targets EZH2, MCL-1 and FoS to suppress proliferation,
invasion and stem cell-like phenotype of aggressive endometrial
cancer cells. Oncotarget. 5:6049–6062. 2014.PubMed/NCBI
|
19
|
Ye W, Xue J, Zhang Q, et al: MiR-449a
functions as a tumor suppressor in endometrial cancer by targeting
CDC25A. Oncol Rep. 32:1193–1199. 2014.PubMed/NCBI
|
20
|
Lee H, Park CS, Deftereos G, Morihara J,
et al: MicroRNA expression in ovarian carcinoma and its correlation
with clinicopathological features. World J Surg oncol. 10:1742012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ratner ES, Tuck D, Richter C, Nallur S, et
al: MicroRNA signatures differentiate uterine cancer tumor
subtypes. Gynecol Oncol. 118:251–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Umene K, Banno K, Kisu I, Yanokura M, et
al: New candidate therapeutic agents for endometrial cancer:
Potential for clinical practice (Review). oncol Rep. 29:855–860.
2013.PubMed/NCBI
|
23
|
Ramón LA, Braza-Boïls A, Gilabert J,
Chirivella M, et al: microRNAs related to angiogenesis are
dysregulated in endometrioid endometrial cancer. Hum Reprod.
27:3036–3045. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ruiz-Llorente L, Ardila-González S, Fanjul
LF, Martínez-Iglesias O and Aranda A: microRNAs 424 and 503 are
mediators of the anti-proliferative and anti-invasive action of the
thyroid hormone receptor beta. Oncotarget. 5:2918–2933.
2014.PubMed/NCBI
|
25
|
Yu L, Ding GF, He C, Sun L, Jiang Y and
Zhu L: MicroRNA-424 is down-regulated in hepatocellular carcinoma
and suppresses cell migration and invasion through c-Myb. PLoS one.
9:e916612014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu K, Hu G, He X, Zhou P, et al:
MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic
cancer. Pathol Oncol Res. 19:739–748. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Oneyama C, Kito Y, Asai R, Ikeda J, et al:
miR-424/503-mediated Rictor upregulation promotes tumor
progression. PLoS One. 8:e803002013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Long XH, Mao JH, Peng AF, Zhou Y, Huang SH
and Liu ZL: Tumor suppressive microRNA-424 inhibits osteosarcoma
cell migration and invasion via targeting fatty acid synthase. Exp
Ther Med. 5:1048–1052. 2013.PubMed/NCBI
|
29
|
de Bruin A, Maiti B, Jakoi L, Timmers C,
Buerki R and Leone G: Identification and characterization of E2F7,
a novel mammalian E2F family member capable of blocking cellular
proliferation. J Biol Chem. 278:42041–42049. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Salvatori B, Iosue I, Mangiavacchi A,
Loddo G, et al: The microRNA-26a target E2F7 sustains cell
proliferation and inhibits monocytic differentiation of acute
myeloid leukemia cells. Cell Death Dis. 3:e4132012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Endo-Munoz L, Dahler A, Teakle N, Rickwood
D, et al: E2F7 can regulate proliferation, differentiation, and
apoptotic responses in human keratinocytes: implications for
cutaneous squamous cell carcinoma formation. Cancer Res.
69:1800–1808. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Di Stefano L, Jensen MR and Helin K: E2F7,
a novel E2F featuring DP-independent repression of a subset of
E2F-regulated genes. EMBo J. 22:6289–6298. 2003. View Article : Google Scholar : PubMed/NCBI
|