1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pancione M, Giordano G, Remo A, et al:
Immune escape mechanisms in colorectal cancer pathogenesis and
liver metastasis. J Immunol Res. 2014:112014. View Article : Google Scholar
|
3
|
Alderton GK: Metastasis. Exosomes drive
premetastatic niche formation. Nat Rev Cancer. 12:4472012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Peinado H, Aleckovic M, Lavotshkin S, et
al: Melanoma exosomes educate bone marrow progenitor cells toward a
pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kosaka N, Iguchi H, Hagiwara K, Yoshioka
Y, Takeshita F and Ochiya T: Neutral sphingomyelinase 2
(nSMase2)-dependent exosomal transfer of angiogenic microRNAs
regulate cancer cell metastasis. J Biol Chem. 288:10849–10859.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thery C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Bang C and Thum T: Exosomes: new players
in cell-cell communication. Int J Biochem Cell Biol. 44:2060–2064.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Raposo G, Nijman HW, Stoorvogel W, et al:
B lymphocytes secrete antigen-presenting vesicles. J Exp Med.
183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lima LG, Chammas R, Monteiro RQ, Moreira
ME and Barcinski MA: Tumor-derived microvesicles modulate the
establishment of metastatic melanoma in a
phosphatidylserine-dependent manner. Cancer Lett. 283:168–175.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hood JL, San RS and Wickline SA: Exosomes
released by melanoma cells prepare sentinel lymph nodes for tumor
metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Skog J, Wurdinger T, van Rijn S, et al:
Glioblastoma microvesicles transport RNA and proteins that promote
tumour growth and provide diagnostic biomarkers. Nat Cell Biol.
10:1470–1476. 2008. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Jung T, Castellana D, Klingbeil P, et al:
CD44v6 dependence of premetastatic niche preparation by exosomes.
Neoplasia. 11:1093–1105. 2009.PubMed/NCBI
|
14
|
Azmi AS, Bao B and Sarkar FH: Exosomes in
cancer development, metastasis, and drug resistance: a
comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Vlassov AV, Magdaleno S, Setterquist R and
Conrad R: Exosomes: current knowledge of their composition,
biological functions, and diagnostic and therapeutic potentials.
Biochim Biophys Acta. 1820:940–948. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu Y, Xiang X, Zhuang X, et al:
Contribution of MyD88 to the tumor exosome-mediated induction of
myeloid derived suppressor cells. Am J Pathol. 176:2490–2499. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Hood JL, Pan H, Lanza GM and Wickline SA:
Paracrine induction of endothelium by tumor exosomes. Lab Invest.
89:1317–1328. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Silva J, Garcia V, Rodriguez M, et al:
Analysis of exosome release and its prognostic value in human
colorectal cancer. Genes Chromosomes Cancer. 51:409–418. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hong B, Cho JH, Kim H, et al: Colorectal
cancer cell-derived microvesicles are enriched in cell
cycle-related mRNAs that promote proliferation of endothelial
cells. BMC Genomics. 10:5562009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi DS, Lee JM, Park GW, et al: Proteomic
analysis of microvesicles derived from human colorectal cancer
cells. J Proteome Res. 6:4646–4655. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mathivanan S, Lim JW, Tauro BJ, Ji H,
Moritz RL and Simpson RJ: Proteomics analysis of A33
immunoaffinity-purified exosomes released from the human colon
tumor cell line LIM1215 reveals a tissue-specific protein
signature. Mol Cell Proteomics. 9:197–208. 2010. View Article : Google Scholar :
|
22
|
Choi DS, Park JO, Jang SC, et al:
Proteomic analysis of microvesicles derived from human colorectal
cancer ascites. Proteomics. 11:2745–2751. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Demory Beckler M, Higginbotham JN,
Franklin JL, et al: Proteomic analysis of exosomes from mutant KRAS
colon cancer cells identifies intercellular transfer of mutant
KRAS. Mol Cell Proteomics. 12:343–355. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Choi DS, Choi DY, Hong BS, et al:
Quantitative proteomics of extracellular vesicles derived from
human primary and metastatic colorectal cancer cells. J Extracell
Vesicles. 1:pp. 187042012, http://dx.doi.org/10.3402/jev.v1i0.18704.
|
25
|
Ji H, Greening DW, Barnes TW, et al:
Proteome profiling of exosomes derived from human primary and
metastatic colorectal cancer cells reveal differential expression
of key metastatic factors and signal transduction components.
Proteomics. 13:1672–1686. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nicolson GL: Paracrine and autocrine
growth mechanisms in tumor metastasis to specific sites with
particular emphasis on brain and lung metastasis. Cancer Metastasis
Rev. 12:325–343. 1993. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fidler IJ: The pathogenesis of cancer
metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev
Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Joukov V, Pajusola K, Kaipainen A, et al:
A novel vascular endothelial growth factor, VEGF-C, is a ligand for
the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.
EMBO J. 15:17511996.PubMed/NCBI
|
29
|
Achen MG, Jeltsch M, Kukk E, et al:
Vascular endothelial growth factor D (VEGF-D) is a ligand for the
tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).
Proc Natl Acad Sci USA. 95:548–553. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Youngs SJ, Ali SA, Taub DD and Rees RC:
Chemokines induce migrational responses in human breast carcinoma
cell lines. Int J Cancer. 71:257–266. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim H and Muller WJ: The role of the
epidermal growth factor receptor family in mammary tumorigenesis
and metastasis. Exp Cell Res. 253:78–87. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Muller A, Homey B, Soto H, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zeelenberg IS, Ruuls-Van Stalle L and Roos
E: Retention of CXCR4 in the endoplasmic reticulum blocks
dissemination of a T cell hybridoma. J Clin Invest. 108:269–277.
2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kitaori T, Ito H, Schwarz EM, et al:
Stromal cell-derived factor 1/CXCR4 signaling is critical for the
recruitment of mesenchymal stem cells to the fracture site during
skeletal repair in a mouse model. Arthritis Rheum. 60:813–823.
2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi
M and Yamamoto N: Stromal cell-derived factor-1 and CXCR4 receptor
interaction in tumor growth and metastasis of breast cancer. Biomed
Pharmacother. 60:273–276. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yasumoto K, Koizumi K, Kawashima A, et al:
Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of
gastric cancer. Cancer Res. 66:2181–2187. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kucia M, Reca R, Miekus K, et al:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
El-Andaloussi S, Lee Y, Lakhal-Littleton
S, et al: Exosome-mediated delivery of siRNA in vitro and in vivo.
Nat Protoc. 7:2112–2126. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hamada K, Monnai M, Kawai K, et al: Liver
metastasis models of colon cancer for evaluation of drug efficacy
using NOD/Shi-scid IL2Rγnull (NOG) mice. Int J Oncol.
32:153–159. 2008.
|
40
|
Voisin T, El Firar A, Fasseu M, et al:
Aberrant expression of OX1 receptors for orexins in colon cancers
and liver metastases: an openable gate to apoptosis. Cancer Res.
71:3341–3351. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Moreno A, López LA, Fabra A and Arús C: 1H
MRS markers of tumour growth in intrasplenic tumours and liver
metastasis induced by injection of HT-29 cells in nude mice spleen.
NMR Biomed. 11:93–106. 1998. View Article : Google Scholar : PubMed/NCBI
|
42
|
Van Niel G, Raposo G, Candalh C, et al:
Intestinal epithelial cells secrete exosome-like vesicles.
Gastroenterology. 121:337–349. 2001. View Article : Google Scholar : PubMed/NCBI
|
43
|
Suetsugu A, Honma K, Saji S, Moriwaki H,
Ochiya T and Hoffman RM: Imaging exosome transfer from breast
cancer cells to stroma at metastatic sites in orthotopic nude-mouse
models. Adv Drug Deliv Rev. 65:383–390. 2013. View Article : Google Scholar
|
44
|
Nazarenko I, Rana S, Baumann A, et al:
Cell surface tetraspanin Tspan8 contributes to molecular pathways
of exosome-induced endothelial cell activation. Cancer Res.
70:1668–1678. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ratajczak J, Wysoczynski M, Hayek F,
Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived
microvesicles: important and underappreciated mediators of
cell-to-cell communication. Leukemia. 20:1487–1495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Fidler IJ: Orthotopic implantation of
human colon carcinomas into nude mice provides a valuable model for
the biology and therapy of metastasis. Cancer Metastasis Rev.
10:229–243. 1991. View Article : Google Scholar : PubMed/NCBI
|
47
|
Giavazzi R, Campbell DE, Jessup JM, Cleary
K and Fidler IJ: Metastatic behavior of tumor cells isolated from
primary and metastatic human colorectal carcinomas implanted into
different sites in nude mice. Cancer Res. 46:1928–1933.
1986.PubMed/NCBI
|
48
|
Balaj L, Lessard R, Dai L, et al: Tumour
microvesicles contain retrotransposon elements and amplified
oncogene sequences. Nat Commun. 2:1802011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Aliotta JM, Pereira M, Johnson KW, et al:
Microvesicle entry into marrow cells mediates tissue-specific
changes in mRNA by direct delivery of mRNA and induction of
transcription. Exp Hematol. 38:233–245. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Aliotta JM, Sanchez-Guijo FM, Dooner GJ,
et al: Alteration of marrow cell gene expression, protein
production, and engraftment into lung by lung-derived
microvesicles: a novel mechanism for phenotype modulation. Stem
Cells. 25:2245–2256. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Grange C, Tapparo M, Collino F, et al:
Microvesicles released from human renal cancer stem cells stimulate
angiogenesis and formation of lung premetastatic niche. Cancer Res.
71:5346–5356. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zeelenberg IS, Ruuls-Van Stalle L and Roos
E: The chemokine receptor CXCR4 is required for outgrowth of colon
carcinoma micrometastases. Cancer Res. 63:3833–3839.
2003.PubMed/NCBI
|
53
|
Tamamura H, Hori A, Kanzaki N, et al: T140
analogs as CXCR4 antagonists identified as anti-metastatic agents
in the treatment of breast cancer. FEBS Lett. 550:79–83. 2003.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Bertolini F, Dell’Agnola C, Mancuso P, et
al: CXCR4 neutralization, a novel therapeutic approach for
non-Hodgkin’s lymphoma. Cancer Res. 62:3106–3112. 2002.PubMed/NCBI
|