Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells

  • Authors:
    • Federica Baldan
    • Catia Mio
    • Elisa Lavarone
    • Carla Di Loreto
    • Fabio Puglisi
    • Giuseppe Damante
    • Cinzia Puppin
  • View Affiliations

  • Published online on: March 23, 2015     https://doi.org/10.3892/or.2015.3873
  • Pages: 2199-2206
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Studies on stem cell differentiation led to the identification of paused genes, characterized by the contemporary presence of both activator and repressor epigenetic markers (bivalent marking). TXNIP is an oncosuppressor gene the expression of which was reduced in breast cancer. In the present study, we evaluated whether the concept of epigenetic bivalent marking can be applied to TXNIP gene in breast cancer cells. Using chromatin immunoprecipitation (ChIP), three histone modifications were investigated: two associated with transcriptional activation, lysines 9-14 acetylation of H3 histone (H3K9K14ac) and lysine 4 trimethylation of H3 histone (H3K4me3), and one associated with transcriptional silencing, lysine 27 trimethylation of H3 histone (H3K27me3). According to the bivalent marking model, TXNIP gene appears to be paused in MDA157 cells (markers of active and repressed transcription are present), but are definitively silenced in MDA468 cells (presence of only markers of transcription repression). This was proven by evaluating TXNIP mRNA and protein levels after the treatment of cell lines with a histone deacetylase inhibitor (SAHA) and a poly-ADP-ribose polymerases inhibitor (PJ34). In MDA157 cells, SAHA and PJ34 showed a synergistic effect: a large increment was observed in TXNIP mRNA and protein levels. By contrast, in MDA468 cells, synergy between the two compounds was not observed. Therefore, the pausing epigenetic signature was permissive for synergy between SAHA and PJ34 on TXNIP gene expression. The synergy between SAHA and PJ34 on TXNIP expression was associated with variation in cell viability and apoptosis. In MDA157 cells, but not in MDA468 cells, combined treatment of SAHA and PJ34 induced a decrease in cell viability and an increase of apoptosis. Thus, our data support the hypothesis that TXNIP is an effective target for the treatment of breast cancer.
View Figures
View References

Related Articles

Journal Cover

May-2015
Volume 33 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Baldan F, Mio C, Lavarone E, Di Loreto C, Puglisi F, Damante G and Puppin C: Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells. Oncol Rep 33: 2199-2206, 2015.
APA
Baldan, F., Mio, C., Lavarone, E., Di Loreto, C., Puglisi, F., Damante, G., & Puppin, C. (2015). Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells. Oncology Reports, 33, 2199-2206. https://doi.org/10.3892/or.2015.3873
MLA
Baldan, F., Mio, C., Lavarone, E., Di Loreto, C., Puglisi, F., Damante, G., Puppin, C."Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells". Oncology Reports 33.5 (2015): 2199-2206.
Chicago
Baldan, F., Mio, C., Lavarone, E., Di Loreto, C., Puglisi, F., Damante, G., Puppin, C."Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells". Oncology Reports 33, no. 5 (2015): 2199-2206. https://doi.org/10.3892/or.2015.3873