1
|
Cao Y, DePinho RA, Ernst M and Vousden K:
Cancer research: Past, present and future. Nat Rev Cancer.
11:749–754. 2011. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Harvey A: The role of natural products in
drug discovery and development in the new millennium. IDrugs.
13:70–72. 2010.PubMed/NCBI
|
3
|
Amin AR, Kucuk O, Khuri FR and Shin DM:
Perspectives for cancer prevention with natural compounds. J Clin
Oncol. 27:2712–2725. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sarkar FH, Li Y, Wang Z and Kong D:
Cellular signaling perturbation by natural products. Cell Signal.
21:1541–1547. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ye M, Liu JK, Lu ZX, Zhao Y, Liu SF, Li
LL, Tan M, Weng XX, Li W and Cao Y: Grifolin, a potential antitumor
natural product from the mushroom Albatrellus confluens, inhibits
tumor cell growth by inducing apoptosis in vitro. FEBS Lett.
579:3437–3443. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ye M, Luo X, Li L, Shi Y, Tan M, Weng X,
Li W, Liu J and Cao Y: Grifolin, a potential antitumor natural
product from the mushroom Albatrellus confluens, induces cell-cycle
arrest in G1 phase via the ERK1/2 pathway. Cancer Lett.
258:199–207. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Luo XJ, Li LL, Deng QP, Yu XF, Yang LF,
Luo FJ, Xiao LB, Chen XY, Ye M, Liu JK, et al: Grifolin, a potent
antitumour natural product upregulates death-associated protein
kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J
Cancer. 47:316–325. 2011. View Article : Google Scholar
|
9
|
Luo XJ, Li W, Yang LF, Yu XF, Xiao LB,
Tang M, Dong X, Deng QP, Bode AM, Liu JK, et al: DAPK1 mediates the
G1 phase arrest in human nasopharyngeal carcinoma cells induced by
grifolin, a potential antitumor natural product. Eur J Pharmacol.
670:427–434. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deng Q, Yu X, Xiao L, Hu Z, Luo X, Tao Y,
Yang L, Liu X, Chen H, Ding Z, et al: Neoalbaconol induces energy
depletion and multiple cell death in cancer cells by targeting
PDK1-PI3-K/Akt signaling pathway. Cell Death Dis. 4:e8042013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu S, Li H, Chen L, Yang L, Li L, Tao Y,
Li W, Li Z, Liu H, Tang M, et al: (-)-Epigallocatechin-3-gallate
inhibition of Epstein- Barr virus spontaneous lytic infection
involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells.
Carcinogenesis. 34:627–637. 2013. View Article : Google Scholar
|
12
|
Song J, Manir MM and Moon SS: Cytotoxic
grifolin derivatives isolated from the wild mushroom Boletus
pseudocalopus (Basidiomycetes). Chem Biodivers. 6:1435–1442. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hara T, Hirasawa A, Sun Q, Sadakane K,
Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y, et
al: Novel selective ligands for free fatty acid receptors GPR120
and GPR40. Naunyn Schmiedebergs Arch Pharmacol. 380:247–255. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin S, Pang RP, Shen JN, Huang G, Wang J
and Zhou JG: Grifolin induces apoptosis via inhibition of PI3K/AKT
signalling pathway in human osteosarcoma cells. Apoptosis.
12:1317–1326. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Quang DN, Hashimoto T, Arakawa Y, Kohchi
C, Nishizawa T, Soma G and Asakawa Y: Grifolin derivatives from
Albatrellus caeruleoporus, new inhibitors of nitric oxide
production in RAW 264. 7 cells. Bioorg Med Chem. 14:164–168. 2006.
View Article : Google Scholar
|
16
|
Pelled D, Raveh T, Riebeling C, Fridkin M,
Berissi H, Futerman AH and Kimchi A: Death-associated protein (DAP)
kinase plays a central role in ceramide-induced apoptosis in
cultured hippocampal neurons. J Biol Chem. 277:1957–1961. 2002.
View Article : Google Scholar
|
17
|
Gozuacik D and Kimchi A: DAPk protein
family and cancer. Autophagy. 2:74–79. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Raval A, Tanner SM, Byrd JC, Angerman EB,
Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ,
et al: Downregulation of death-associated protein kinase 1 (DAPK1)
in chronic lymphocytic leukemia. Cell. 129:879–890. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hupp TR, Sparks A and Lane DP: Small
peptides activate the latent sequence-specific DNA binding function
of p53. Cell. 83:237–245. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Martoriati A, Doumont G, Alcalay M,
Bellefroid E, Pelicci PG and Marine JC: dapk1, encoding an
activator of a p19ARF- p53-mediated apoptotic
checkpoint, is a transcription target of p53. Oncogene.
24:1461–1466. 2005. View Article : Google Scholar
|
21
|
Nichols NM and Matthews KS: Human p53
phosphorylation mimic, S392E, increases nonspecific DNA affinity
and thermal stability. Biochemistry. 41:170–178. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
MacCorkle RA and Tan TH: Mitogen-activated
protein kinases in cell-cycle control. Cell Biochem Biophys.
43:451–461. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Llambi F, Lourenço FC, Gozuacik D, Guix C,
Pays L, Del Rio G, Kimchi A and Mehlen P: The dependence receptor
UNC5H2 mediates apoptosis through DAP-kinase. EMBO J. 24:1192–1201.
2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shang T, Joseph J, Hillard CJ and
Kalyanaraman B: Death- associated protein kinase as a sensor of
mitochondrial membrane potential: Role of lysosome in mitochondrial
toxin-induced cell death. J Biol Chem. 280:34644–34653. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen X, Chi Y, Bloecher A, Aebersold R,
Clurman BE and Roberts JM: N-acetylation and ubiquitin-independent
proteasomal degradation of p21Cip1. Mol Cell.
16:839–847. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bloom J, Amador V, Bartolini F, DeMartino
G and Pagano M: Proteasome-mediated degradation of p21 via
N-terminal ubiquitinylation. Cell. 115:71–82. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR,
Chang ZF and Chen RH: Bidirectional signals transduced by DAPK-ERK
interaction promote the apoptotic effect of DAPK. EMBO J.
24:294–304. 2005. View Article : Google Scholar :
|
28
|
Hellwig V, Nopper R, Mauler F, Freitag J,
Liu J-K, Ding Z-H and Stadler M: Activities of prenylphenol
derivatives from fruitbodies of Albatrellus spp. on the human and
rat vanilloid receptor 1 (VR1) and characterisation of the novel
natural product, confluentin. Arch Pharm. 336:119–126. 2003.
View Article : Google Scholar
|
29
|
Liu Q, Shu X, Wang L, Sun A, Liu J and Cao
X: Albaconol, a plant-derived small molecule, inhibits macrophage
function by suppressing NF-kappaB activation and enhancing SOCS1
expression. Cell Mol Immunol. 5:271–278. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fuchs Y and Steller H: Programmed cell
death in animal development and disease. Cell. 147:742–758. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Galluzzi L, Vitale I, Abrams JM, Alnemri
ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry
WS, Fulda S, et al: Molecular definitions of cell death
subroutines: Recommendations of the Nomenclature Committee on Cell
Death 2012. Cell Death Differ. 19:107–120. 2012. View Article : Google Scholar :
|
32
|
Degterev A, Huang Z, Boyce M, Li Y, Jagtap
P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J:
Chemical inhibitor of nonapoptotic cell death with therapeutic
potential for ischemic brain injury. Nat Chem Biol. 1:112–119.
2005. View Article : Google Scholar
|
33
|
Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong
WY, Liu ZG, Ong CN and Shen HM: Autophagy plays a protective role
during zVAD-induced necrotic cell death. Autophagy. 4:457–466.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bell BD, Leverrier S, Weist BM, Newton RH,
Arechiga AF, Luhrs KA, Morrissette NS and Walsh CM: FADD and
caspase-8 control the outcome of autophagic signaling in
proliferating T cells. Proc Natl Acad Sci USA. 105:16677–16682.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Toker A and Newton AC: Cellular signaling:
Pivoting around PDK-1. Cell. 103:185–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peifer C and Alessi DR: Small-molecule
inhibitors of PDK1. Chem Med Chem. 3:1810–1838. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang CS, Wang H, Li GX, Yang Z, Guan F and
Jin H: Cancer prevention by tea: Evidence from laboratory studies.
Pharmacol Res. 64:113–122. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Link A, Balaguer F and Goel A: Cancer
chemoprevention by dietary polyphenols: Promising role for
epigenetics. Biochem Pharmacol. 80:1771–1792. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Leone M, Zhai D, Sareth S, Kitada S, Reed
JC and Pellecchia M: Cancer prevention by tea polyphenols is linked
to their direct inhibition of antiapoptotic Bcl-2-family proteins.
Cancer Res. 63:8118–8121. 2003.PubMed/NCBI
|
41
|
Li M, He Z, Ermakova S, Zheng D, Tang F,
Cho YY, Zhu F, Ma WY, Sham Y, Rogozin EA, et al: Direct inhibition
of insulin-like growth factor-I receptor kinase activity by
(-)-epigal-locatechin-3-gallate regulates cell transformation.
Cancer Epidemiol Biomarkers Prev. 16:598–605. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bode AM and Dong Z: Epigallocatechin
3-gallate and green tea catechins: united they work, divided they
fail. Cancer Prev Res. 2:514–517. 2009. View Article : Google Scholar
|
43
|
Urusova DV, Shim JH, Kim DJ, Jung SK,
Zykova TA, Carper A, Bode AM and Dong Z: Epigallocatechin-gallate
suppresses tumorigenesis by directly targeting Pin1. Cancer Prev
Res. 4:1366–1377. 2011. View Article : Google Scholar
|
44
|
Ramos S: Cancer chemoprevention and
chemotherapy: Dietary polyphenols and signalling pathways. Mol Nutr
food Res. 52:507–526. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kim JW, Amin AR and Shin DM:
Chemoprevention of head and neck cancer with green tea polyphenols.
Cancer Prev Res. 3:900–909. 2010. View Article : Google Scholar
|
46
|
Yang CS, Wang X, Lu G and Picinich SC:
Cancer prevention by tea: Animal studies, molecular mechanisms and
human relevance. Nat Rev Cancer. 9:429–439. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Singh BN, Shankar S and Srivastava RK:
Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms,
perspectives and clinical applications. Biochem Pharmacol.
82:1807–1821. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tsao AS, Liu D, Martin J, Tang XM, Lee JJ,
El-Naggar AK, Wistuba I, Culotta KS, Mao L, Gillenwater A, et al:
Phase II randomized, placebo-controlled trial of green tea extract
in patients with high-risk oral premalignant lesions. Cancer Prev
Res. 2:931–941. 2009. View Article : Google Scholar
|
49
|
Steinmann J, Buer J, Pietschmann T and
Steinmann E: Anti- infective properties of
epigallocatechin-3-gallate (EGCG), a component of green tea. Br J
Pharmacol. 168:1059–1073. 2013. View Article : Google Scholar :
|
50
|
Satoh T, Hoshikawa Y, Satoh Y, Kurata T
and Sairenji T: The interaction of mitogen-activated protein
kinases to Epstein-Barr virus activation in Akata cells. Virus
Genes. 18:57–64. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Darr CD, Mauser A and Kenney S:
Epstein-Barr virus immediate-early protein BRLF1 induces the lytic
form of viral replication through a mechanism involving
phosphatidylino-sitol-3 kinase activation. J Virol. 75:6135–6142.
2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zheng H, Li LL, Hu DS, Deng XY and Cao Y:
Role of Epstein-Barr virus encoded latent membrane protein 1 in the
carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol.
4:185–196. 2007.PubMed/NCBI
|
53
|
Zhao Y, Wang H, Zhao XR, Luo FJ, Tang M
and Cao Y: Epigallocatechin-3-gallate interferes with EBV-encoding
AP-1 signal transduction pathway. Zhonghua Zhong Liu Za Zhi.
26:393–397. 2004.In Chinese. PubMed/NCBI
|
54
|
Kanwar J, Taskeen M, Mohammad I, Huo C,
Chan TH and Dou QP: Recent advances on tea polyphenols. Front
Biosci. 4:111–131. 2012. View
Article : Google Scholar
|