1
|
Jerant AF, Johnson JT, Sheridan CD and
Caffrey TJ: Early detection and treatment of skin cancer. Am Fam
Physician. 62:357–368. 375–356. 381–352. 2000.PubMed/NCBI
|
2
|
Marks R: An overview of skin cancers:
Incidence and causation. Cancer. 75:607–612. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Gruijl FD: Skin cancer and solar UV
radiation. Eur J Cancer. 35:2003–2009. 1999. View Article : Google Scholar
|
4
|
Yoshikawa T, Rae V, Bruins-Slot W, Van den
Berg JW, Taylor JR and Streilein JW: Susceptibility to effects of
UVB radiation on induction of contact hypersensitivity as a risk
factor for skin cancer in humans. J Invest Dermatol. 95:530–536.
1990. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Gruijl FR, van Kranen HJ and Mullenders
LH: UV-induced DNA damage, repair, mutations and oncogenic pathways
in skin cancer. J Photochem Photobiol B. 63:19–27. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Melnikova VO and Ananthaswamy HN: Cellular
and molecular events leading to the development of skin cancer.
Mutat Res. 571:91–106. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Clydesdale GJ, Dandie GW and Muller HK:
Ultraviolet light induced injury: Immunological and inflammatory
effects. Immunol Cell Biol. 79:547–568. 2001. View Article : Google Scholar
|
8
|
Terui T, Okuyama R and Tagami H: Molecular
events occurring behind ultraviolet-induced skin inflammation. Curr
Opin Allergy Clin Immunol. 1:461–467. 2001. View Article : Google Scholar
|
9
|
Mantovani A, Alleven P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Diakos CI, Charles KA, McMillan DC and
Clarke SJ: Cancer-related inflammation and treatment effectiveness.
Lancet Oncol. 15:e493–e503. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bickers DR and Athar M: Oxidative stress
in the pathogenesis of skin disease. J Invest Dermatol.
126:2565–2575. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Caricchio R, McPhie L and Cohen PL:
Ultraviolet B radiation-induced cell death: Critical role of
ultraviolet dose in inflammation and lupus autoantigen
redistribution. J Immunol. 171:5778–5786. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lawrence T, Willoughby DA and Gilroy DW:
Anti-inflammatory lipid mediators and insights into the resolution
of inflammation. Nat Rev Immunol. 2:787–795. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Holick MF: Vitamin D: importance in the
prevention of cancers, type 1 diabetes, heart disease, and
osteoporosis. Am J Clin Nutr. 79:362–371. 2004.PubMed/NCBI
|
15
|
Holick MF: The vitamin D epidemic and its
health consequences. J Nutr. 135:2739S–2748S. 2005.PubMed/NCBI
|
16
|
Bikle DD: The vitamin D receptor: A tumor
suppressor in skin. Adv Exp Med Biol. 810:282–302. 2014.PubMed/NCBI
|
17
|
Gloster HM J and Neal K: Skin cancer in
skin of color. J Am Acad Dermatol. 55:741–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Halder RM and Bang KM: Skin cancer in
Blacks in the United States. Dermatol Clin. 6:397–405.
1988.PubMed/NCBI
|
19
|
Koh D, Wang H, Lee J, Chia KS, Lee HP and
Goh CL: Basal cell carcinoma, squamous cell carcinoma and melanoma
of the skin: Analysis of the Singapore Cancer Registry Data
1968–1997. Br J Dermatol. 148:1161–1166. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vermeer M, Schmieder GJ, Yoshikawa T, van
den Berg JW, Metzman MS, Taylor JR and Streilein JW: Effects of
ultraviolet B light on cutaneous immune responses of humans with
deeply pigmented skin. J Invest Dermatol. 97:729–734. 1991.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gallagher RP, Hill GB, Bajdik CD, Fincham
S, Coldman AJ, McLean DI and Threlfall WJ: Sunlight exposure,
pigmentary factors, and risk of nonmelanocytic skin cancer. I Basal
cell carcinoma Arch Dermatol. 131:157–163. 1995.
|
22
|
Rees JL: Genetics of hair and skin color.
Annu Rev Genet. 37:67–90. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jablonski NG: The evolution of human skin
and skin color. Annu Rev Anthropol. 33:585–623. 2004. View Article : Google Scholar
|
24
|
Rastogi RP, Singh SP, Häder DP and Sinha
RP: Detection of reactive oxygen species (ROS) by the
oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in
the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys
Res Commun. 397:603–607. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luo JD, Wang YY, Fu WL, Wu J and Chen AF:
Gene therapy of endothelial nitric oxide synthase and manganese
superoxide dismutase restores delayed wound healing in type 1
diabetic mice. Circulation. 110:2484–2493. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Braga PC, Marabini L, Wang YY, Lattuada N,
Calò R, Bertelli A, Falchi M, Dal Sasso M and Bianchi T:
Characterisation of the antioxidant effects of Aesculus
hippocastanum L. bark extract on the basis of radical scavenging
activity, the chemiluminescence of human neutrophil bursts and
lipoperoxidation assay. Eur Rev Med Pharmacol Sci. 16(Suppl 3):
1–9. 2012.PubMed/NCBI
|
27
|
Mueller MM: Inflammation in epithelial
skin tumours: Old stories and new ideas. Eur J Cancer. 42:735–744.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Graesslin O, Cortez A, Fauvet R, Lorenzato
M, Birembaut P and Daraï E: Metalloproteinase-2, -7 and -9 and
tissue inhibitor of metalloproteinase-1 and -2 expression in
normal, hyperplastic and neoplastic endometrium: A
clinical-pathological correlation study. Ann Oncol. 17:637–645.
2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Acker T, Fandrey J and Acker H: The good,
the bad and the ugly in oxygen-sensing: ROS, cytochromes and
prolyl-hydroxylases. Cardiovasc Res. 71:195–207. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kawagishi H and Finkel T: Unraveling the
truth about antioxidants: ROS and disease: finding the right
balance. Nat Med. 20:711–713. 2014. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Perera RM and Bardeesy N: Cancer: When
antioxidants are bad. Nature. 475:43–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ristow M and Zarse K: How increased
oxidative stress promotes longevity and metabolic health: The
concept of mitochondrial hormesis (mitohormesis). Exp Gerontol.
45:410–418. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ristow M: Unraveling the truth about
antioxidants: Mitohormesis explains ROS-induced health benefits.
Nat Med. 20:709–711. 2014. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Tapia PC: Sublethal mitochondrial stress
with an attendant stoichiometric augmentation of reactive oxygen
species may precipitate many of the beneficial alterations in
cellular physiology produced by caloric restriction, intermittent
fasting, exercise and dietary phytonutrients: 'Mitohormesis' for
health and vitality. Med Hypotheses. 66:832–843. 2006. View Article : Google Scholar
|
35
|
Klabunde RE and Anderson DE: Role of
nitric oxide and reactive oxygen species in platelet-activating
factor-induced microvas-cular leakage. J Vasc Res. 39:238–245.
2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wullaert A, Bonnet MC and Pasparakis M:
NF-κB in the regulation of epithelial homeostasis and inflammation.
Cell Res. 21:146–158. 2011. View Article : Google Scholar
|
37
|
Thiery JP: Epithelial-mesenchymal
transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Benson JM, Seagrave J, Weber WM,
Santistevan CD, Grotendorst GR, Schultz GS and March TH: Time
course of lesion development in the hairless guinea-pig model of
sulfur mustard-induced dermal injury. Wound Repair Regen.
19:348–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Teulière J, Faraldo MM, Deugnier MA,
Shtutman M, Ben-Ze'ev A, Thiery JP and Glukhova MA: Targeted
activation of beta-catenin signaling in basal mammary epithelial
cells affects mammary development and leads to hyperplasia.
Development. 132:267–277. 2005. View Article : Google Scholar
|
40
|
Coussens LM, Tinkle CL, Hanahan D and Werb
Z: MMP-9 supplied by bone marrow-derived cells contributes to skin
carcinogenesis. Cell. 103:481–490. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kuivanen TT, Jeskanen L, Kyllönen L,
Impola U and Saarialho-Kere UK: Transformation-specific matrix
metalloproteinases, MMP-7 and MMP-13, are present in epithelial
cells of keratoacanthomas. Mod Pathol. 19:1203–1212. 2006.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Toth M, Bernardo MM, Gervasi DC, Soloway
PD, Wang Z, Bigg HF, Overall CM, DeClerck YA, Tschesche H and Cher
ML: Tissue inhibitor of metalloproteinase (TIMP)-2 acts
synergistically with synthetic matrix metalloproteinase (MMP)
inhibitors but not with TIMP-4 to enhance the (Membrane type
1)-MMP-dependent activation of pro-MMP-2. J Biol Chem.
275:41415–41423. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hashimoto G, Aoki T, Nakamura H, Tanzawa K
and Okada Y: Inhibition of ADAMTS4 (aggrecanase-1) by tissue
inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett.
494:192–195. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kai HS, Butler GS, Morrison CJ, King AE,
Pelman GR and Overall CM: Utilization of a novel recombinant
myoglobin fusion protein expression system to characterize the
tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2
C-terminal domain and tails by mutagenesis. The importance of
acidic residues in binding the MMP-2 hemopexin C-domain. J Biol
Chem. 277:48696–48707. 2002. View Article : Google Scholar : PubMed/NCBI
|