1
|
Benson JR, Jatoi I, Keisch M, Esteva FJ,
Makris A and Jordan VC: Early breast cancer. Lancet. 373:1463–1479.
2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ingham PW and McMahon AP: Hedgehog
signaling in animal development: Paradigms and principles. Genes
Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
McMahon AP, Ingham PW and Tabin CJ:
Developmental roles and clinical significance of hedgehog
signaling. Curr Top Dev Biol. 53:1–114. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Saldanha G: The Hedgehog signalling
pathway and cancer. J Pathol. 193:427–432. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kasper M, Jaks V, Fiaschi M and Toftgård
R: Hedgehog signalling in breast cancer. Carcinogenesis.
30:903–911. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Naylor TL, Greshock J, Wang Y, Colligon T,
Yu QC, Clemmer V, Zaks TZ and Weber BL: High resolution genomic
analysis of sporadic breast cancer using array-based comparative
genomic hybridization. Breast Cancer Res. 7:R1186–R1198. 2005.
View Article : Google Scholar
|
7
|
Nessling M, Richter K, Schwaenen C, Roerig
P, Wrobel G, Wessendorf S, Fritz B, Bentz M, Sinn HP, Radlwimmer B,
et al: Candidate genes in breast cancer revealed by
microarray-based comparative genomic hybridization of archived
tissue. Cancer Res. 65:439–447. 2005.PubMed/NCBI
|
8
|
Wolf I, Bose S, Desmond JC, Lin BT,
Williamson EA, Karlan BY and Koeffler HP: Unmasking of
epigenetically silenced genes reveals DNA promoter methylation and
reduced expression of PTCH in breast cancer. Breast Cancer Res
Treat. 105:139–155. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mukherjee S, Frolova N, Sadlonova A, Novak
Z, Steg A, Page GP, Welch DR, Lobo-Ruppert SM, Ruppert JM, Johnson
MR, et al: Hedgehog signaling and response to cyclopamine differ in
epithelial and stromal cells in benign breast and breast cancer.
Cancer Biol Ther. 5:674–683. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Moraes RC, Zhang X, Harrington N, Fung JY,
Wu MF, Hilsenbeck SG, Allred DC and Lewis MT: Constitutive
activation of smoothened (SMO) in mammary glands of transgenic mice
leads to increased proliferation, altered differentiation and
ductal dysplasia. Development. 134:1231–1242. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Iorns E, Turner NC, Elliott R, Syed N,
Garrone O, Gasco M, Tutt AN, Crook T, Lord CJ and Ashworth A:
Identification of CDK10 as an important determinant of resistance
to endocrine therapy for breast cancer. Cancer Cell. 13:91–104.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu YJ, Wang Q, Li W, Huang XH, Zhen MC,
Huang SH, Chen LZ, Xue L and Zhang HW: Rab23 is a potential
biological target for treating hepatocellular carcinoma. World J
Gastroenterol. 13:1010–1017. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim KR, Oh SY, Park UC, Wang JH, Lee JD,
Kweon HJ, Kim SY, Park SH, Choi DK, Kim CG, et al: Gene expression
profiling using oligonucleotide microarray in atrophic gastritis
and intestinal metaplasia. Korean J Gastroenterol. 49:209–224.
2007.In Korean. PubMed/NCBI
|
14
|
Johnson RL, Rothman AL, Xie J, Goodrich
LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr,
et al: Human homolog of patched, a candidate gene for the basal
cell nevus syndrome. Science. 272:1668–1671. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wicking C, Smyth I and Bale A: The
hedgehog signalling pathway in tumorigenesis and development.
Oncogene. 18:7844–7851. 1999. View Article : Google Scholar
|
16
|
Ruiz i Altaba A, Mas C and Stecca B: The
Gli code: An information nexus regulating cell fate, stemness and
cancer. Trends Cell Biol. 17:438–447. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Taipale J, Chen JK, Cooper MK, Wang B,
Mann RK, Milenkovic L, Scott MP and Beachy PA: Effects of oncogenic
mutations in Smoothened and Patched can be reversed by
cyclo-pamine. Nature. 406:1005–1009. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Berman DM, Karhadkar SS, Hallahan AR,
Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale
J, Olson JM, et al: Medulloblastoma growth inhibition by hedgehog
pathway blockade. Science. 297:1559–1561. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kubo M, Nakamura M, Tasaki A, Yamanaka N,
Nakashima H, Nomura M, Kuroki S and Katano M: Hedgehog signaling
pathway is a new therapeutic target for patients with breast
cancer. Cancer Res. 64:6071–6074. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang X, Harrington N, Moraes RC, Wu MF,
Hilsenbeck SG and Lewis MT: Cyclopamine inhibition of human breast
cancer cell growth independent of Smoothened (Smo). Breast Cancer
Res Treat. 115:505–521. 2009. View Article : Google Scholar
|
21
|
Wang HB, Liu YL, Hu YZ and Chi SM: Effect
of cyclopamine on growth and proliferation of human mammary
carcinoma cell Bcap-37. J Med Postgraduates. 20:567–571. 2007.In
Chinese.
|
22
|
Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH,
Ganesan K, Cross D, Tan LK, Tao J, Gopalakrishnan V, et al:
Integrative genomics identifies RAB23 as an invasion mediator gene
in diffuse-type gastric cancer. Cancer Res. 68:4623–4630. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Evans TM, Simpson F, Parton RG and Wicking
C: Characterization of Rab23, a negative regulator of sonic
hedgehog signaling. Methods Enzymol. 403:759–777. 2005. View Article : Google Scholar
|
24
|
Eggenschwiler JT, Bulgakov OV, Qin J, Li T
and Anderson KV: Mouse Rab23 regulates hedgehog signaling from
smoothened to Gli proteins. Dev Biol. 290:1–12. 2006. View Article : Google Scholar
|
25
|
Chi S, Xie G, Liu H, Chen K, Zhang X, Li C
and Xie J: Rab23 negatively regulates Gli1 transcriptional factor
in a Su(Fu)-dependent manner. Cell Signal. 24:1222–1228. 2012.
View Article : Google Scholar : PubMed/NCBI
|