1
|
Gill ZP, Perks CM, Newcomb PV and Holly
JM: Insulin-like growth factor-binding protein (IGFBP-3)
predisposes breast cancer cells to programmed cell death in a
non-IGF-dependent manner. J Biol Chem. 272:25602–25607. 1997.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Nakamura M, Takakura M, Fujii R, Maida Y,
Bono Y, Mizumoto Y, Zhang X, Kiyono T and Kyo S: The PRB-dependent
FOXO1/IGFBP-1 axis is essential for progestin to inhibit
endometrial epithelial growth. Cancer Lett. 336:68–75. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hanafusa T, Shinji T, Shiraha H, Nouso K,
Iwasaki Y, Yumoto E, Ono T and Koide N: Functional promoter
upstream p53 regulatory sequence of IGFBP3 that is silenced by
tumor specific methylation. BMC Cancer. 5:92005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Baxter RC, Butt AJ, Schedlich LJ and
Martin JL: Antiproliferative and pro-apoptotic activities of
insulin-like growth factor-binding protein-3. Growth Horm IGF Res.
10(10 Suppl A): S10–S11. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ho L, Stojanovski A, Whetstone H, Wei QX,
Mau E, Wunder JS and Alman B: Gli2 and p53 cooperate to regulate
IGFBP-3-mediated chondrocyte apoptosis in the progression from
benign to malignant cartilage tumors. Cancer Cell. 16:126–136.
2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Butt AJ and Williams AC: IGFBP-3 and
apoptosis - a license to kill? Apoptosis. 6:199–205. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Williams AC, Collard TJ, Perks CM, Newcomb
P, Moorghen M, Holly JM and Paraskeva C: Increased p53-dependent
apoptosis by the insulin-like growth factor binding protein IGFBP-3
in human colonic adenoma-derived cells. Cancer Res. 60:22–27.
2000.PubMed/NCBI
|
8
|
Hollowood AD, Lai T, Perks CM, Newcomb PV,
Alderson D and Holly JM: IGFBP-3 prolongs the p53 response and
enhances apoptosis following UV irradiation. Int J Cancer.
88:336–341. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Collard TJ, Guy M, Butt AJ, Perks CM,
Holly JM, Paraskeva C and Williams AC: Transcriptional upregulation
of the insulin-like growth factor binding protein IGFBP-3 by sodium
butyrate increases IGF-independent apoptosis in human colonic
adenoma-derived epithelial cells. Carcinogenesis. 24:393–401. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang EY, Madireddi MT, Gopalkrishnan RV,
Leszczyniecka M, Su Z, Lebedeva IV, Kang D, Jiang H, Lin JJ,
Alexandre D, et al: Genomic structure, chromosomal localization and
expression profile of a novel melanoma differentiation associated
(mda-7) gene with cancer specific growth suppressing and apoptosis
inducing properties. Oncogene. 20:7051–7063. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ellerhorst JA, Prieto VG, Ekmekcioglu S,
Broemeling L, Yekell S, Chada S and Grimm EA: Loss of MDA-7
expression with progression of melanoma. J Clin Oncol.
20:1069–1074. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chada S, Sutton RB, Ekmekcioglu S,
Ellerhorst J, Mumm JB, Leitner WW, Yang HY, Sahin AA, Hunt KK,
Fuson KL, et al: MDA-7/IL-24 is a unique cytokine - tumor
suppressor in the IL-10 family. Int Immunopharmacol. 4:649–667.
2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dent P, Yacoub A, Hamed HA, Park MA, Dash
R, Bhutia SK, Sarkar D, Wang XY, Gupta P, Emdad L, et al: The
development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther.
128:375–384. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu S, Oshima T, Imada T, Masuda M, Debnath
B, Grande F, Garofalo A and Neamati N: Stabilization of MDA-7/IL-24
for colon cancer therapy. Cancer Lett. 335:421–430. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Gupta P, Emdad L, Lebedeva IV, Sarkar D,
Dent P, Curiel DT, Settleman J and Fisher PB: Targeted
combinatorial therapy of non-small cell lung carcinoma using a
GST-fusion protein of full-length or truncated MDA-7/IL-24 with
Tarceva. J Cell Physiol. 215:827–836. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Deng WG, Kwon J, Ekmekcioglu S, Poindexter
NJ and Grimm EA: IL-24 gene transfer sensitizes melanoma cells to
erlotinib through modulation of the Apaf-1 and Akt signaling
pathways. Melanoma Res. 21:44–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sauane M, Gopalkrishnan RV, Sarkar D, Su
ZZ, Lebedeva IV, Dent P, Pestka S and Fisher PB: MDA-7/IL-24: Novel
cancer growth suppressing and apoptosis inducing cytokine. Cytokine
Growth Factor Rev. 14:35–51. 2003. View Article : Google Scholar
|
18
|
Mhashilkar AM, Schrock RD, Hindi M, Liao
J, Sieger K, Kourouma F, Zou-Yang XH, Onishi E, Takh O, Vedvick TS,
et al: Melanoma differentiation associated gene-7 (mda-7): A novel
anti-tumor gene for cancer gene therapy. Mol Med. 7:271–282.
2001.PubMed/NCBI
|
19
|
Chada S, Mhashilkar AM, Liu Y, Nishikawa
T, Bocangel D, Zheng M, Vorburger SA, Pataer A, Swisher SG, Ramesh
R, et al: mda-7 gene transfer sensitizes breast carcinoma cells to
chemotherapy, biologic therapies and radiotherapy: Correlation with
expression of bcl-2 family members. Cancer Gene Ther. 13:490–502.
2006. View Article : Google Scholar
|
20
|
Lebedeva IV, Sarkar D, Su ZZ, Kitada S,
Dent P, Stein CA, Reed JC and Fisher PB: Bcl-2 and
Bcl-xL differentially protect human prostate cancer
cells from induction of apoptosis by melanoma differentiation
associated gene-7, mda-7/IL-24. Oncogene. 22:8758–8773. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma XM and Blenis J: Molecular mechanisms
of mTOR-mediated translational control. Nat Rev Mol Cell Biol.
10:307–318. 2009. View
Article : Google Scholar : PubMed/NCBI
|
22
|
She QB, Halilovic E, Ye Q, Zhen W,
Shirasawa S, Sasazuki T, Solit DB and Rosen N: 4E-BP1 is a key
effector of the oncogenic activation of the AKT and ERK signaling
pathways that integrates their function in tumors. Cancer Cell.
18:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shaw RJ and Cantley LC: Ras, PI(3)K and
mTOR signalling controls tumour cell growth. Nature. 441:424–430.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cusack JC Jr: Overcoming antiapoptotic
responses to promote chemosensitivity in metastatic colorectal
cancer to the liver. Ann Surg Oncol. 10:852–862. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fabbri F, Brigliadori G, Carloni S, Ulivi
P, Vannini I, Tesei A, Silvestrini R, Amadori D and Zoli W:
Zoledronic acid increases docetaxel cytotoxicity through pMEK and
Mcl-1 inhibition in a hormone-sensitive prostate carcinoma cell
line. J Transl Med. 6:432008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mills JR, Hippo Y, Robert F, Chen SM,
Malina A, Lin CJ, Trojahn U, Wendel HG, Charest A, Bronson RT, et
al: mTORC1 promotes survival through translational control of
Mcl-1. Proc Natl Acad Sci USA. 105:10853–10858. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chan S: Targeting the mammalian target of
rapamycin (mTOR): A new approach to treating cancer. Br J Cancer.
91:1420–1424. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Petroulakis E, Mamane Y, Le Bacquer O,
Shahbazian D and Sonenberg N: mTOR signaling: Implications for
cancer and anticancer therapy. Br J Cancer. 96(Suppl): R11–R15.
2007.PubMed/NCBI
|
29
|
Adams JM: Ways of dying: Multiple pathways
to apoptosis. Genes Dev. 17:2481–2495. 2003. View Article : Google Scholar : PubMed/NCBI
|