IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review)
- Authors:
- Yuxin Xie
- Keqi Xie
- Qiheng Gou
- Nianyong Chen
-
Affiliations: Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: August 26, 2015 https://doi.org/10.3892/or.2015.4229
- Pages: 2225-2232
This article is mentioned in:
Abstract
Berger AH, Knudson AG and Pandolfi PP: A continuum model for tumour suppression. Nature. 476:163–169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stovall DB, Cao P and Sui G: SOX7: From a developmental regulator to an emerging tumor suppressor. Histol Histopathol. 29:439–445. 2014. | |
Liu B, Xia X, Zhu F, Park E, Carbajal S, Kiguchi K, DiGiovanni J, Fischer SM and Hu Y: IKKalpha is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell. 14:212–225. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kwak YT, Radaideh SM, Ding L, Li R, Frenkel E, Story MD, Girard L, Minna J and Verma UN: Cells lacking IKKalpha show nuclear cyclin D1 overexpression and a neoplastic phenotype: Role of IKKalpha as a tumor suppressor. Mol Cancer Res. 9:341–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marinari B, Ballaro C, Koster MI, Giustizieri ML, Moretti F, Crosti F, Papoutsaki M, Karin M, Alema S, Chimenti S, et al: IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. J Invest Dermatol. 129:60–69. 2009. View Article : Google Scholar | |
Marinari B, Moretti F, Botti E, Giustizieri ML, Descargues P, Giunta A, Stolfi C, Ballaro C, Papoutsaki M, Alemà S, et al: The tumor suppressor activity of IKKalpha in stratified epithelia is exerted in part via the TGF-beta antiproliferative pathway. Proc Natl Acad Sci USA. 105:17091–17096. 2008. View Article : Google Scholar : PubMed/NCBI | |
McKenzie FR, Connelly MA, Balzarano D, Muller JR, Geleziunas R and Marcu KB: Functional isoforms of IkappaB kinase alpha (IKKalpha) lacking leucine zipper and helix-loop-helix domains reveal that IKKalpha and IKKbeta have different activation requirements. Mol Cell Biol. 20:2635–2649. 2000. View Article : Google Scholar : PubMed/NCBI | |
Connelly MA and Marcu KB: CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res. 41:537–549. 1995.PubMed/NCBI | |
Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109(Suppl): S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, Doi T and Saiki I: Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem. 278:36916–36923. 2003. View Article : Google Scholar : PubMed/NCBI | |
Van Waes C, Yu M, Nottingham L and Karin M: Inhibitor-kappaB kinase in tumor promotion and suppression during progression of squamous cell carcinoma. Clin Cancer Res. 13:4956–4959. 2007. View Article : Google Scholar : PubMed/NCBI | |
Van Waes C: Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res. 13:1076–1082. 2007. View Article : Google Scholar : PubMed/NCBI | |
Anest V, Cogswell PC and Baldwin AS Jr: IkappaB kinase alpha and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IkappaBalpha degradation. J Biol Chem. 279:31183–31189. 2004. View Article : Google Scholar : PubMed/NCBI | |
Elias PM, Ahn SK, Denda M, Brown BE, Crumrine D, Kimutai LK, Kömüves L, Lee SH and Feingold KR: Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J Invest Dermatol. 119:1128–1136. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Zhu F, Xia X, Park E and Hu Y: A tale of terminal differentiation: IKKalpha, the master keratinocyte regulator. Cell Cycle. 8:527–531. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Park E, Zhu F, Bustos T, Liu J, Shen J, Fischer SM and Hu Y: A critical role for I kappaB kinase alpha in the development of human and mouse squamous cell carcinomas. Proc Natl Acad Sci USA. 103:17202–17207. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sil AK, Maeda S, Sano Y, Roop DR and Karin M: IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 428:660–664. 2004. View Article : Google Scholar : PubMed/NCBI | |
Park E, Liu B, Xia X, Zhu F, Jami WB and Hu Y: Role of IKKalpha in skin squamous cell carcinomas. Future Oncol. 7:123–134. 2011. View Article : Google Scholar | |
Park E, Zhu F, Liu B, Xia X, Shen J, Bustos T, Fischer SM and Hu Y: Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer Res. 67:9158–9168. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Park E, Liu B, Xia X, Fischer SM and Hu Y: Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis. Histol Histopathol. 24:265–271. 2009. | |
Xia X, Park E, Liu B, Willette-Brown J, Gong W, Wang J, Mitchell D, Fischer SM and Hu Y: Reduction of IKKalpha expression promotes chronic ultraviolet B exposure-induced skin inflammation and carcinogenesis. Am J Pathol. 176:2500–2508. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peinado C, Kang X, Hardamon C, Arora S, Mah S, Zhang H, Ngolab J and Bui JD: The nuclear factor-kappaB pathway down-regulates expression of the NKG2D ligand H60a in vitro: Implications for use of nuclear factor-kappaB inhibitors in cancer therapy. Immunology. 139:265–274. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M and Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 125:1276–1284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I and Ortiz RM: Shedding light on ADAM metalloproteinases. Trends Biochemical Sci. 30:413–422. 2005. View Article : Google Scholar | |
Liu S, Chen Z, Zhu F and Hu Y: IkappaB kinase alpha and cancer. J Interferon Cytokine Res. 32:152–158. 2012. View Article : Google Scholar : | |
Liu B, Willette-Brown J, Liu S, Chen X, Fischer SM and Hu Y: IKKalpha represses a network of inflammation and proliferation pathways and elevates c-Myc antagonists and differentiation in a dose-dependent manner in the skin. Cell Death Differ. 18:1854–1864. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, Kenner L, Tschachler E and Wagner EF: Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther. 10:2012008. View Article : Google Scholar : PubMed/NCBI | |
Sano S, Chan KS and DiGiovanni J: Impact of Stat3 activation upon skin biology: A dichotomy of its role between homeostasis and diseases. J Dermatol Sci. 50:1–14. 2008. View Article : Google Scholar | |
Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang XJ and Karin M: IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci USA. 105:2487–2492. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gandarillas A: The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle. 11:4507–4516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pulverer B, Sommer A, McArthur GA, Eisenman RN and Luscher B: Analysis of Myc/Max/Mad network members in adipogenesis: Inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. J Cell Physiol. 183:399–410. 2000. View Article : Google Scholar : PubMed/NCBI | |
Drabsch Y and ten Dijke P: TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mordasky Markell L, Perez-Lorenzo R, Masiuk KE, Kennett MJ and Glick AB: Use of a TGFbeta type I receptor inhibitor in mouse skin carcinogenesis reveals a dual role for TGFbeta signaling in tumor promotion and progression. Carcinogenesis. 31:2127–2135. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ravindran A, Mohammed J, Gunderson AJ, Cui X and Glick AB: Tumor-promoting role of TGFbeta1 signaling in ultraviolet B-induced skin carcinogenesis is associated with cutaneous inflammation and lymph node migration of dermal dendritic cells. Carcinogenesis. 35:959–966. 2014. View Article : Google Scholar : | |
Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP and Verma UN: IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. J Biol Chem. 280:33945–33952. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tashiro E, Tsuchiya A and Imoto M: Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 98:629–635. 2007. View Article : Google Scholar : PubMed/NCBI | |
Diehl JA, Cheng M, Roussel MF and Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511. 1998. View Article : Google Scholar : PubMed/NCBI | |
Alt JR, Cleveland JL, Hannink M and Diehl JA: Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14:3102–3114. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chan TA, Hwang PM, Hermeking H, Kinzler KW and Vogelstein B: Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev. 14:1584–1588. 2000.PubMed/NCBI | |
Zhu F, Xia X, Liu B, Shen J and Hu Y, Person M and Hu Y: IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol Cell. 27:214–227. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dellambra E, Golisano O, Bondanza S, Siviero E, Lacal P, Molinari M, D'Atri S and De Luca M: Downregulation of 14-3-3sigma prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol. 149:1117–1130. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Jiang Q, Willette-Brown J, Xi S, Zhu F, Burkett S, Back T, Song NY, Datla M and Sun Z: The pivotal role of IKKalpha in the development of spontaneous lung squamous cell carcinomas. Cancer Cell. 23:527–540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, Witover B, Salit J and Crystal RG: The human airway epithelial basal cell transcriptome. PloS One. 6:e183782011. View Article : Google Scholar : PubMed/NCBI | |
Ye S, Lee KB, Park MH, Lee JS and Kim SM: p63 regulates growth of esophageal squamous carcinoma cells via the Akt signaling pathway. Int J Oncol. 44:2153–2159. 2014.PubMed/NCBI | |
Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M and Roop DR: p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA. 104:3255–3260. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cambiaghi V, Giuliani V, Lombardi S, Marinelli C, Toffalorio F and Pelicci PG: TRIM proteins in cancer. Adv Exp Med Biol. 770:77–91. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sho T, Tsukiyama T, Sato T, Kondo T, Cheng J, Saku T, Asaka M and Hatakeyama S: TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim Biophys Acta. 1813:1245–1253. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayashi A, Yamauchi N, Shibahara J, Kimura H, Morikawa T, Ishikawa S, Nagae G, Nishi A, Sakamoto Y and Kokudo N: Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior. PloS One. 9:e913302014. View Article : Google Scholar : PubMed/NCBI | |
Tie F, Banerjee R, Saiakhova AR, Howard B, Monteith KE, Scacheri PC, Cosgrove MS and Harte PJ: Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development. 141:1129–1139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ring BZ, Seitz RS, Beck RA, Shasteen WJ, Soltermann A, Arbogast S, Robert F, Schreeder MT and Ross DT: A novel five-antibody immunohistochemical test for subclassification of lung carcinoma. Mod Pathol. 22:1032–1043. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Baud V, Oga T, Kim KI, Yoshida K and Karin M: IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature. 410:710–714. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maeda G, Chiba T, Kawashiri S, Satoh T and Imai K: Epigenetic inactivation of IkappaB Kinase-alpha in oral carcinomas and tumor progression. Clin Cancer Res. 13:5041–5047. 2007. View Article : Google Scholar : PubMed/NCBI | |
Choi JD and Lee JS: Interplay between epigenetics and genetics in cancer. Genomics Inform. 11:164–173. 2013. View Article : Google Scholar | |
Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB and Issa JP: Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 57:3370–3374. 1997.PubMed/NCBI | |
Bairwa NK, Saha A, Gochhait S, Pal R, Gupta V and Bamezai RN: Microsatellite instability: an indirect assay to detect defects in the cellular mismatch repair machinery. Methods Mol Biol. 1105:497–509. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Zhu N, Findley HW, Woods WG and Zhou M: Identification and characterization of the IKKalpha promoter: Positive and negative regulation by ETS-1 and p53, respectively. J Biol Chem. 279:52141–52149. 2004. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Li Y, Ai P, Xie Y, Zhu H and Chen N: Increase in IkappaB kinase alpha expression suppresses the tumor progression and improves the prognosis for nasopharyngeal carcinoma. Mol Carcinog. 54:156–165. 2015. View Article : Google Scholar | |
Yan M, Zhang Y, He B, Xiang J, Wang ZF, Zheng FM, Xu J, Chen MY, Zhu YL, Wen HJ, et al: IKKalpha restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat Commun. 5:36612014. View Article : Google Scholar | |
van Dorst EB, van Muijen GN, Litvinov SV and Fleuren GJ: The limited difference between keratin patterns of squamous cell carcinomas and adenocarcinomas is explicable by both cell lineage and state of differentiation of tumour cells. J Clin Pathol. 51:679–684. 1998. View Article : Google Scholar | |
Huang WG, Cheng AL, Chen ZC, Peng F, Zhang PF, Li MY, Li F, Li JL, Li C, Yi H, et al: Targeted proteomic analysis of 14-3-3sigma in nasopharyngeal carcinoma. Int J Biochem Cell Biol. 42:137–147. 2010. View Article : Google Scholar | |
Sullu Y, Demirag GG, Yildirim A, Karagoz F and Kandemir B: Matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in invasive ductal carcinoma of the breast. Pathol Res Pract. 207:747–753. 2011. View Article : Google Scholar : PubMed/NCBI | |
Busson P, Ooka T and Corbex M: Nasopharyngeal carcinomas and Epstein-Barr virus: From epidemiology and detection to therapy. Med Sci (Paris). 20:453–457. 2004.In French. View Article : Google Scholar | |
Valentine R, Dawson CW, Hu C, Shah KM, Owen TJ, Date KL, Maia SP, Shao J, Arrand JR and Young LS: Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol Cancer. 9:12010. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Li Y, Peng X, Henderson F Jr, Deng L and Chen N: Ikappa B kinase alpha involvement in the development of nasopharyngeal carcinoma through a NF-kappaB-independent and ERK-dependent pathway. Oral Oncol. 49:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park KJ, Krishnan V, O'Malley BW, Yamamoto Y and Gaynor RB: Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell. 18:71–82. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA and Karin M: Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature. 446:690–694. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV and Karin M: IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 107:763–775. 2001. View Article : Google Scholar : PubMed/NCBI | |
Merkhofer EC, Cogswell P and Baldwin AS: Her2 activates NF-kappaB and induces invasion through the canonical pathway involving IKKalpha. Oncogene. 29:1238–1248. 2010. View Article : Google Scholar : |