1
|
Jemal A, Murray T, Ward E, Samuels A,
Tiwari RC, Ghafoor A, Feuer EJ and Thun MJ: Cancer statistics,
2005. CA Cancer J Clin. 55:10–30. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Urban N and Drescher C: Potential and
limitations in early diagnosis of ovarian cancer. Adv Exp Med Biol.
622:3–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ruddon RW: Cancer Biology. Oxford
University Press; USA: 2007
|
4
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: New opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Berchuck A, Heron KA, Carney ME, Lancaster
JM, Fraser EG, Vinson VL, Deffenbaugh AM, Miron A, Marks JR,
Futreal PA, et al: Frequency of germline and somatic BRCA1
mutations in ovarian cancer. Clin Cancer Res. 4:2433–2437.
1998.PubMed/NCBI
|
6
|
Malander S, Ridderheim M, Måsbäck A, Loman
N, Kristoffersson U, Olsson H, Nilbert M and Borg A: One in 10
ovarian cancer patients carry germ line BRCA1 or BRCA2 mutations:
Results of a prospective study in Southern Sweden. Eur J Cancer.
40:422–428. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Risch HA, McLaughlin JR, Cole DE, Rosen B,
Bradley L, Kwan E, Jack E, Vesprini DJ, Kuperstein G, Abrahamson
JL, et al: Prevalence and penetrance of germline BRCA1 and BRCA2
mutations in a population series of 649 women with ovarian cancer.
Am J Hum Genet. 68:700–710. 2001. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Hirsh-Yechezkel G, Chetrit A, Lubin F,
Friedman E, Peretz T, Gershoni R, Rizel S, Struewing JP and Modan
B: Population attributes affecting the prevalence of BRCA mutation
carriers in epithelial ovarian cancer cases in Israel. Gynecol
Oncol. 89:494–498. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Menkiszak J, Gronwald J, Górski B,
Jakubowska A, Huzarski T, Byrski T, Foszczyńska-Kłoda M, Haus O,
Janiszewska H, Perkowska M, et al: Hereditary ovarian cancer in
Poland. Int J Cancer. 106:942–945. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brozek I, Ochman K, Debniak J, Morzuch L,
Ratajska M, Stepnowska M, Stukan M, Emerich J and Limon J: High
frequency of BRCA1/2 germline mutations in consecutive ovarian
cancer patients in Poland. Gynecol Oncol. 108:433–437. 2008.
View Article : Google Scholar
|
11
|
Ratajska M, Krygier M, Stukan M, Kuźniacka
A, Koczkowska M, Dudziak M, Śniadecki M, Dębniak J, Wydra D, Brozek
I, et al: Mutational analysis of BRCA1/2 in a group of 134
consecutive ovarian cancer patients. Novel and recurrent BRCA1/2
alterations detected by next generation sequencing. J Appl Genet.
56:193–198. 2015. View Article : Google Scholar :
|
12
|
Walsh T, Casadei S, Lee MK, Pennil CC,
Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A,
et al: Mutations in 12 genes for inherited ovarian, fallopian tube,
and peritoneal carcinoma identified by massively parallel
sequencing. Proc Natl Acad Sci USA. 108:18032–18037. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Apostolou P and Fostira F: Hereditary
breast cancer: The era of new susceptibility genes. Biomed Res Int.
2013:7473182013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Walsh T and King MC: Ten genes for
inherited breast cancer. Cancer Cell. 11:103–105. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu LC, Wang ZW, Tsan JT, Spillman MA,
Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM and Baer R:
Identification of a RING protein that can interact in vivo with the
BRCA1 gene product. Nat Genet. 14:430–440. 1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Irminger-Finger I and Jefford CE: Is there
more to BARD1 than BRCA1? Nat Rev Cancer. 6:382–391. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Irminger-Finger I, Soriano JV, Vaudan G,
Montesano R and Sappino AP: In vitro repression of Brca1-associated
RING domain gene, Bard1, induces phenotypic changes in mammary
epithelial cells. J Cell Biol. 143:1329–1339. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Williams RS, Bernstein N, Lee MS,
Rakovszky ML, Cui D, Green R, Weinfeld M and Glover JN: Structural
basis for phosphorylation-dependent signaling in the DNA-damage
response. Biochem Cell Biol. 83:721–727. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Baer R and Ludwig T: BRCA1/BARD1
heterodimer, a tumor suppressor complex with ubiquitin E3 ligase
activity. Curr Opin Genet Dev. 12:86–91. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sedgwick SG and Smerdon SJ: The ankyrin
repeat: A diversity of interactions on a common structural
framework. Trends Biochem Sci. 24:311–316. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li J, Mahajan A and Tsai MD: Ankyrin
repeat: A unique motif mediating protein-protein interactions.
Biochemistry. 45:15168–15178. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Irminger-Finger I, Leung WC, Li J,
Dubois-Dauphin M, Harb J, Feki A, Jefford CE, Soriano JV, Jaconi M,
Montesano R, et al: Identification of BARD1 as mediator between
proapoptotic stress and p53-dependent apoptosis. Mol Cell.
8:1255–1266. 2001. View Article : Google Scholar
|
23
|
McCarthy EE, Celebi JT, Baer R and Ludwig
T: Loss of Bard1, the heterodimeric partner of the Brca1 tumor
suppressor, results in early embryonic lethality and chromosomal
instability. Mol Cell Biol. 23:5056–5063. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sabatier R, Adélaïde J, Finetti P, Ferrari
A, Huiart L, Sobol H, Chaffanet M, Birnbaum D and Bertucci F: BARD1
homozygous deletion, a possible alternative to BRCA1 mutation in
basal breast cancer. Genes Chromosomes Cancer. 49:1143–1151. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Thai TH, Du F, Tsan JT, Jin Y, Phung A,
Spillman MA, Massa HF, Muller CY, Ashfaq R, Mathis JM, et al:
Mutations in the BRCA1-associated RING domain (BARD1) gene in
primary breast, ovarian and uterine cancers. Hum Mol Genet.
7:195–202. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kleiman FE and Manley JL: The
BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage
and tumor suppression. Cell. 104:743–753. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ratajska M, Antoszewska E, Piskorz A,
Brozek I, Borg Å, Kusmierek H, Biernat W and Limon J: Cancer
predisposing BARD1 mutations in breast-ovarian cancer families.
Breast Cancer Res Treat. 131:89–97. 2012. View Article : Google Scholar
|
28
|
Pennington KP, Walsh T, Harrell MI, Lee
MK, Pennil CC, Rendi MH, Thornton A, Norquist BM, Casadei S, Nord
AS, et al: Germline and somatic mutations in homologous
recombination genes predict platinum response and survival in
ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer
Res. 20:764–775. 2014. View Article : Google Scholar :
|
29
|
De Brakeleer S, De Grève J, Loris R, Janin
N, Lissens W, Sermijn E and Teugels E: Cancer predisposing missense
and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast
cancer families. Hum Mutat. 31:E1175–E1185. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Karppinen SM, Heikkinen K, Rapakko K and
Winqvist R: Mutation screening of the BARD1 gene: Evidence for
involvement of the Cys557Ser allele in hereditary susceptibility to
breast cancer. J Med Genet. 41:e1142004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Castéra L, Krieger S, Rousselin A, Legros
A, Baumann JJ, Bruet O, Brault B, Fouillet R, Goardon N, Letac O,
et al: Next-generation sequencing for the diagnosis of hereditary
breast and ovarian cancer using genomic capture targeting multiple
candidate genes. Eur J Hum Genet. 22:1305–1313. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Narayan G, Pulido HA, Koul S, Lu XY,
Harris CP, Yeh YA, Vargas H, Posso H, Terry MB, Gissmann L, et al:
Genetic analysis identifies putative tumor suppressor sites at
2q35-q36.1 and 2q36.3-q37.1 involved in cervical cancer
progression. Oncogene. 22:3489–3499. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pugh TJ, Morozova O, Attiyeh EF,
Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M,
Kiezun A, et al: The genetic landscape of high-risk neuroblastoma.
Nat Genet. 45:279–284. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
den Dunnen JT and Antonarakis SE:
Nomenclature for the description of human sequence variations. Hum
Genet. 109:121–124. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jefford CE, Feki A, Harb J, Krause KH and
Irminger-Finger I: Nuclear-cytoplasmic translocation of BARD1 is
linked to its apoptotic activity. Oncogene. 23:3509–3520. 2004.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Fox D III, Le Trong I, Rajagopal P,
Brzovic PS, Stenkamp RE and Klevit RE: Crystal structure of the
BARD1 ankyrin repeat domain and its functional consequences. J Biol
Chem. 283:21179–21186. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang YQ, Pilyugin M, Kuester D, Leoni VP,
Li L, Casula G, Zorcolo L, Schneider-Stock R, Atzori L and
Irminger-Finger I: Expression of oncogenic BARD1 isoforms affects
colon cancer progression and correlates with clinical outcome. Br J
Cancer. 107:675–683. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang YQ, Bianco A, Malkinson AM, Leoni
VP, Frau G, De Rosa N, André PA, Versace R, Boulvain M, Laurent GJ,
et al: BARD1: An independent predictor of survival in non-small
cell lung cancer. Int J Cancer. 131:83–94. 2012. View Article : Google Scholar
|
39
|
Li L, Ryser S, Dizin E, Pils D, Krainer M,
Jefford CE, Bertoni F, Zeillinger R and Irminger-Finger I:
Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer
Res. 67:11876–11885. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bosse KR, Diskin SJ, Cole KA, Wood AC,
Schnepp RW, Norris G, Nguyen le B, Jagannathan J, Laquaglia M,
Winter C, et al: Common variation at BARD1 results in the
expression of an oncogenic isoform that influences neuroblastoma
susceptibility and oncogenicity. Cancer Res. 72:2068–2078. 2012.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Feki A, Jefford CE, Berardi P, Wu JY,
Cartier L, Krause KH and Irminger-Finger I: BARD1 induces apoptosis
by catalysing phosphorylation of p53 by DNA-damage response kinase.
Oncogene. 24:3726–3736. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Feki A, Jefford CE, Durand P, Harb J,
Lucas H, Krause KH and Irminger-Finger I: BARD1 expression during
spermatogenesis is associated with apoptosis and hormonally
regulated. Biol Reprod. 71:1614–1624. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Leung CC and Glover JN: BRCT domains: Easy
as one, two, three. Cell Cycle. 10:2461–2470. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nelson AC and Holt JT: Impact of RING and
BRCT domain mutations on BRCA1 protein stability, localization and
recruitment to DNA damage. Radiat Res. 174:1–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
di Masi A, Gullotta F, Cappadonna V,
Leboffe L and Ascenzi P: Cancer predisposing mutations in BRCT
domains. IUBMB Life. 63:503–512. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stacey SN, Sulem P, Johannsson OT,
Helgason A, Gudmundsson J, Kostic JP, Kristjansson K, Jonsdottir T,
Sigurdsson H, Hrafnkelsson J, et al: The BARD1 Cys557Ser variant
and breast cancer risk in Iceland. PLoS Med. 3:e2172006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rudd MF, Webb EL, Matakidou A, Sellick GS,
Williams RD, Bridle H, Eisen T and Houlston RS; GELCAPS Consortium:
Variants in the GH-IGF axis confer susceptibility to lung cancer.
Genome Res. 16:693–701. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li L, Cohen M, Wu J, Sow MH, Nikolic B,
Bischof P and Irminger-Finger I: Identification of BARD1
splice-isoforms involved in human trophoblast invasion. Int J
Biochem Cell Biol. 39:1659–1672. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ars E, Kruyer H, Gaona A, Serra E, Lazaro
C and Estivill X: Prenatal diagnosis of sporadic neurofibromatosis
type 1 (NF1) by RNA and DNA analysis of a splicing mutation. Prenat
Diagn. 19:739–742. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Baralle D and Baralle M: Splicing in
action: Assessing disease causing sequence changes. J Med Genet.
42:737–748. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Teraoka SN, Telatar M, Becker-Catania S,
Liang T, Onengüt S, Tolun A, Chessa L, Sanal O, Bernatowska E,
Gatti RA, et al: Splicing defects in the ataxia-telangiectasia
gene, ATM: Underlying mutations and consequences. Am J Hum Genet.
64:1617–1631. 1999. View
Article : Google Scholar : PubMed/NCBI
|
52
|
Ryser S, Dizin E, Jefford CE, Delaval B,
Gagos S, Christodoulidou A, Krause KH, Birnbaum D and
Irminger-Finger I: Distinct roles of BARD1 isoforms in mitosis:
Full-length BARD1 mediates Aurora B degradation, cancer-associated
BARD1beta scaffolds Aurora B and BRCA2. Cancer Res. 69:1125–1134.
2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Woditschka S, Evans L, Duchnowska R, Reed
LT, Palmieri D, Qian Y, Badve S, Sledge G Jr, Gril B, Aladjem MI,
et al: DNA double-strand break repair genes and oxidative damage in
brain metastasis of breast cancer. J Natl Cancer Inst. 106:pii:
dju1452014. View Article : Google Scholar
|
54
|
Chen J and Weiss WA: Alternative splicing
in cancer: Implications for biology and therapy. Oncogene. 34:1–14.
2015. View Article : Google Scholar
|