1
|
Chung JK: Sodium iodide symporter: Its
role in nuclear medicine. J Nucl Med. 43:1188–1200. 2002.PubMed/NCBI
|
2
|
Verburg FA, de Keizer B, Lips CJ, Zelissen
PM and de Klerk JM: Prognostic significance of successful ablation
with radioiodine of differentiated thyroid cancer patients. Eur J
Endocrinol. 152:33–37. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hackshaw A, Harmer C, Mallick U, Haq M and
Franklyn JA: 131I activity for remnant ablation in
patients with differentiated thyroid cancer: A systematic review. J
Clin Endocrinol Metab. 92:28–38. 2007. View Article : Google Scholar
|
4
|
Chung JK, Youn HW, Kang JH, Lee HY and
Kang KW: Sodium iodide symporter and the radioiodine treatment of
thyroid carcinoma. Nucl Med Mol Imaging. 44:4–14. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang M, Guo R, Shi S, Miao Y, Zhang Y and
Li B: Baculovirus vector-mediated transfer of sodium iodide
symporter and plasminogen kringle 5 genes for tumor radioiodide
therapy. PLoS One. 9:e923262014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guo R, Zhang M, Xi Y, Ma Y, Liang S, Shi
S, Miao Y and Li B: Theranostic studies of human sodium iodide
symporter imaging and therapy using 188Re: A human
glioma study in mice. PLoS One. 9:e1020112014. View Article : Google Scholar
|
7
|
Kim YH, Youn H, Na J, Hong KJ, Kang KW,
Lee DS and Chung JK: Codon-optimized human sodium iodide symporter
(opt-hNIS) as a sensitive reporter and efficient therapeutic gene.
Theranostics. 5:86–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vadysirisack DD, Shen DH and Jhiang SM:
Correlation of Na+/I− symporter expression
and activity: Implications of Na+/I−
symporter as an imaging reporter gene. J Nucl Med. 47:182–190.
2006.PubMed/NCBI
|
9
|
Wagner M, Schmelz K, Dörken B and Tamm I:
Transcriptional regulation of human survivin by early growth
response (Egr)-1 transcription factor. Int J Cancer. 122:1278–1287.
2008. View Article : Google Scholar
|
10
|
Guo R, Tian L, Han B, Xu H, Zhang M and Li
B: Feasibility of a novel positive feedback effect of
131I-promoted Bac-Egr1-hNIS expression in malignant
glioma via baculovirus. Nucl Med Biol. 38:599–604. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gorski DH, Beckett MA, Jaskowiak NT,
Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM,
Kufe DW, et al: Blockage of the vascular endothelial growth factor
stress response increases the antitumor effects of ionizing
radiation. Cancer Res. 59:3374–3378. 1999.PubMed/NCBI
|
12
|
Zhu X, Palmer MR, Makrigiorgos GM and
Kassis AI: Solid-tumor radionuclide therapy dosimetry: New
paradigms in view of tumor microenvironment and angiogenesis. Med
Phys. 37:2974–2984. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Davidson DJ, Haskell C, Majest S, Kherzai
A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z,
et al: Kringle 5 of human plasminogen induces apoptosis of
endothelial and tumor cells through surface-expressed
glucose-regulated protein 78. Cancer Res. 65:4663–4672. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu H, Dhanabal M, Volk R, Waterman MJ,
Ramchandran R, Knebelmann B, Segal M and Sukhatme VP: Kringle 5
causes cell cycle arrest and apoptosis of endothelial cells.
Biochem Biophys Res Commun. 258:668–673. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cao Y, Chen A, An SS, Ji RW, Davidson D
and Llinás M: Kringle 5 of plasminogen is a novel inhibitor of
endothelial cell growth. J Biol Chem. 272:22924–22928. 1997.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Blezinger P, Wang J, Gondo M, Quezada A,
Mehrens D, French M, Singhal A, Sullivan S, Rolland A, Ralston R,
et al: Systemic inhibition of tumor growth and tumor metastases by
intramuscular administration of the endostatin gene. Nat
Biotechnol. 17:343–348. 1999. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Shi S, Zhang M, Guo R, Miao Y, Hu J, Xi Y
and Li B: In vivo molecular imaging and radionuclide
(131I) therapy of human nasopharyngeal carcinoma cells
transfected with a lentivirus expressing sodium iodide symporter.
PLoS One. 10:e01165312015. View Article : Google Scholar
|
18
|
Sides MD, Sosulski ml, Luo F, Lin Z,
Flemington EK and Lasky JA: Co-treatment with arsenic trioxide and
ganciclovir reduces tumor volume in a murine xenograft model of
nasopharyngeal carcinoma. Virol J. 10(152)2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chamberlain MC: Emerging clinical
principles on the use of bevacizumab for the treatment of malignant
gliomas. Cancer. 116:3988–3999. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Niyazi M, Siefert A, Schwarz SB, Ganswindt
U, Kreth FW, Tonn JC and Belka C: Therapeutic options for recurrent
malignant glioma. Radiother Oncol. 98:1–14. 2011. View Article : Google Scholar
|
21
|
Mandl ES, Dirven CM, Buis DR, Postma TJ
and Vandertop WP: Repeated surgery for glioblastoma multiforme:
Only in combination with other salvage therapy. Surg Neurol.
69:506–509. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mayer R and Sminia P: Reirradiation
tolerance of the human brain. Int J Radiat Oncol Biol Phys.
70:1350–1360. 2008. View Article : Google Scholar
|
23
|
Skugor M: The Cleveland Clinic Guide to
Thyroid Disorders. Kaplan Publisher; New York: 2006
|
24
|
Dwyer RM, Bergert ER, O'connor MK, Gendler
SJ and Morris JC: In vivo radioiodide imaging and treatment of
breast cancer xenografts after MUC1-driven expression of the sodium
iodide symporter. Clin Cancer Res. 11:1483–1489. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dwyer RM, Schatz SM, Bergert ER, Myers RM,
Harvey ME, Classic KL, Blanco MC, Frisk CS, Marler RJ and Davis BJ:
A preclinical large animal model of adenovirus-mediated expression
of the sodium-iodide symporter for radioiodide imaging and therapy
of locally recurrent prostate cancer. Mol Ther. 12:835–841. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu XY, Qiu SB, Zou WG, Pei ZF, Gu JF, Luo
CX, Ruan HM, Chen Y, Qi YP and Qian C: Effective gene-virotherapy
for complete eradication of tumor mediated by the combination of
hTRAIL (TNFSF10) and plasminogen k5. Mol Ther. 11:531–541. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Naldini L, Blömer U, Gallay P, Ory D,
Mulligan R, Gage FH, Verma IM and Trono D: In vivo gene delivery
and stable transduction of nondividing cells by a lentiviral
vector. Science. 272:263–267. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sakuma T, Barry MA and Ikeda Y: Lentiviral
vectors: Basic to translational. Biochem J. 443:603–618. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Charrier S, Stockholm D, Seye K, Opolon P,
Taveau M, Gross DA, Bucher-Laurent S, Delenda C, Vainchenker W,
Danos O, et al: A lentiviral vector encoding the human
Wiskott-Aldrich syndrome protein corrects immune and cytoskeletal
defects in WASP knockout mice. Gene Ther. 12:597–606. 2005.
View Article : Google Scholar
|
30
|
Rothe M, Modlich U and Schambach A:
Biosafety challenges for use of lentiviral vectors in gene therapy.
Curr Gene Ther. 13:453–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu BH, Wang X, Ma YX and Wang S: CMV
enhancer/human PDGF-beta promoter for neuron-specific transgene
expression. Gene Ther. 11:52–60. 2004. View Article : Google Scholar
|