1
|
Creutz CE, Tomsig JL, Snyder SL, Gautier
MC, Skouri F, Beisson J and Cohen J: The copines, a novel class of
C2 domain-containing, calcium-dependent, phospholipid-binding
proteins conserved from Paramecium to humans. J Biol Chem.
273:1393–1402. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tomsig JL and Creutz CE: Copines: A
ubiquitous family of Ca2+-dependent phospholipid-binding
proteins. Cell Mol Life Sci. 59:1467–1477. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maitra R, Grigoryev DN, Bera TK, Pastan IH
and Lee B: Cloning, molecular characterization, and expression
analysis of Copine 8. Biochem Biophys Res Commun. 303:842–847.
2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yang S, Yang H, Grisafi P, Sanchatjate S,
Fink GR, Sun Q and Hua J: The BON/CPN gene family represses cell
death and promotes cell growth in Arabidopsis. Plant J. 45:166–179.
2006. View Article : Google Scholar
|
5
|
Ramsey CS, Yeung F, Stoddard PB, Li D,
Creutz CE and Mayo MW: Copine-I represses NF-kappaB transcription
by endoproteolysis of p65. Oncogene. 27:3516–3526. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Park N, Yoo JC, Ryu J, Hong SG, Hwang EM
and Park JY: Copine1 enhances neuronal differentiation of the
hippocampal progenitor HiB5 cells. Mol Cells. 34:549–554. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Whittaker CA and Hynes RO: Distribution
and evolution of von Willebrand/integrin A domains: Widely
dispersed domains with roles in cell adhesion and elsewhere. Mol
Biol Cell. 13:3369–3387. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Heinrich C, Keller C, Boulay A, Vecchi M,
Bianchi M, Sack R, Lienhard S, Duss S, Hofsteenge J and Hynes NE:
Copine-III interacts with ErbB2 and promotes tumor cell migration.
Oncogene. 29:1598–1610. 2010. View Article : Google Scholar
|
9
|
Claret FX, Hibi M, Dhut S, Toda T and
Karin M: A new group of conserved coactivators that increase the
specificity of AP-1 transcription factors. Nature. 383:453–457.
1996. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chamovitz DA and Segal D: JAB1/CSN5 and
the COP9 signalosome. A complex situation. EMBO Rep. 2:96–101.
2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wei N, Tsuge T, Serino G, Dohmae N, Takio
K, Matsui M and Deng XW: The COP9 complex is conserved between
plants and mammals and is related to the 26S proteasome regulatory
complex. Curr Biol. 8:919–922. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tomoda K, Yoneda-Kato N, Fukumoto A,
Yamanaka S and Kato JY: Multiple functions of Jab1 are required for
early embryonic development and growth potential in mice. J Biol
Chem. 279:43013–43018. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tian L, Peng G, Parant JM, Leventaki V,
Drakos E, Zhang Q, Parker-Thornburg J, Shackleford TJ, Dai H, Lin
SY, et al: Essential roles of Jab1 in cell survival, spontaneous
DNA damage and DNA repair. Oncogene. 29:6125–6137. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shackleford TJ and Claret FX: JAB1/CSN5: A
new player in cell cycle control and cancer. Cell Div. 5:262010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wei N, Serino G and Deng XW: The COP9
signalosome: More than a protease. Trends Biochem Sci. 33:592–600.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang J, Barnes RO, West NR, Olson M, Chu
JE and Watson PH: Jab1 is a target of EGFR signaling in
ERalpha-negative breast cancer. Breast Cancer Res. 10:R512008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tomoda K, Kubota Y, Arata Y, Mori S, Maeda
M, Tanaka T, Yoshida M, Yoneda-Kato N and Kato JY: The cytoplasmic
shuttling and subsequent degradation of p27Kip1 mediated
by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem.
277:2302–2310. 2002. View Article : Google Scholar
|
18
|
Lee EW, OH W and Song J: Jab1 as a
mediator of nuclear export and cytoplasmic degradation of p53. Mol
Cells. 22:133–140. 2006.PubMed/NCBI
|
19
|
Bae MK, Ahn MY, Jeong JW, Bae MH, Lee YM,
Bae SK, Park JW, Kim KR and Kim KW: Jab1 interacts directly with
HIF-1alpha and regulates its stability. J Biol Chem. 277:9–12.
2002. View Article : Google Scholar
|
20
|
Birol M and Echalier A: Structure and
function of MPN (Mpr1/Pad1 N-terminal) domain-containing proteins.
Curr Protein Pept Sci. 15:504–517. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Burger-Kentischer A, Finkelmeier D, Thiele
M, Schmucker J, Geiger G, Tovar GE and Bernhagen J: Binding of
JAB1/CSN5 to MIF is mediated by the MPN domain but is independent
of the JAMM motif. FEBS Lett. 579:1693–1701. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Park JY, Hwang EM, Park N, Kim E, Kim DG,
Kang D, Han J, Choi WS, Ryu PD and Hong SG: Gateway RFP-fusion
vectors for high throughput functional analysis of genes. Mol
Cells. 23:357–362. 2007.PubMed/NCBI
|
23
|
Kouvaraki MA, Rassidakis GZ, Tian L, Kumar
R, Kittas C and Claret FX: Jun activation domain-binding protein 1
expression in breast cancer inversely correlates with the cell
cycle inhibitor p27Kip1. Cancer Res. 63:2977–2981.
2003.PubMed/NCBI
|
24
|
Benes CH, Wu N, Elia AE, Dharia T, Cantley
LC and Soltoff SP: The C2 domain of PKCdelta is a phosphotyrosine
binding domain. Cell. 121:271–280. 2005. View Article : Google Scholar : PubMed/NCBI
|