1
|
Collaborative Group on Hormonal Factors in
Breast Cancer: Breast cancer and breastfeeding: Collaborative
reanalysis of individual data from 47 epidemiological studies in 30
countries, including 50302 women with breast cancer and 96973 women
without the disease. Lancet. 360:187–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Anothaisintawee T, Wiratkapun C,
Lerdsitthichai P, Kasamesup V, Wongwaisayawan S, Srinakarin J,
Hirunpat S, Woodtichartpreecha P, Boonlikit S, Teerawattananon Y,
et al: Risk factors of breast cancer: a systematic review and
meta-analysis. Asia Pac J Public Health. 25:368–387. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bernier MO, Plu-Bureau G, Bossard N, Ayzac
L and Thalabard JC: Breastfeeding and risk of breast cancer: A
metaanalysis of published studies. Hum Reprod Update. 6:374–386.
2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Michels KB, Willett WC, Rosner BA, Manson
JE, Hunter DJ, Colditz GA, Hankinson SE and Speizer FE: Prospective
assessment of breastfeeding and breast cancer incidence among
89,887 women. Lancet. 347:431–436. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dempsey C, McCormick NH, Croxford TP, Seo
YA, Grider A and Kelleher SL: Marginal maternal zinc deficiency in
lactating mice reduces secretory capacity and alters milk
composition. J Nutr. 142:655–660. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bostanci Z, Mack RP Jr, Lee S, Soybel DI
and Kelleher SL: Paradoxical zinc toxicity and oxidative stress in
the mammary gland during marginal dietary zinc deficiency. Reprod
Toxicol. 54:84–92. 2015. View Article : Google Scholar
|
7
|
Stang J, Story MT, Harnack L and
Neumark-Sztainer D: Relationships between vitamin and mineral
supplemnt use, dietary intake, and dietary adequacy among
adolescents. J Am Diet Assoc. 100:905–910. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Herbst CA, Menon KC, Ferguson EL, Thomson
CD, Bailey K, Gray AR, Zodpey S, Saraf A, Das PK and Skeaff SA:
Dietary and non-dietary factors associated with serum zinc in
Indian women. Biol Trace Elem Res. 161:38–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Scheplyagina LA: Impact of the mother's
zinc deficiency on the woman's and newborn's health status. J Trace
Elem Med Biol. 19:29–35. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gumulec J, Masarik M, Adam V, Eckschlager
T, Provaznik I and Kizek R: Serum and tissue zinc in epithelial
malignancies: A meta-analysis. PLoS One. 9:e997902014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tinoco-Veras CM, Bezerra Sousa MS, da
Silva BB, Franciscato Cozzolino SM, Viana Pires L, Coelho Pimentel
JA, do Nascimento-Nogueira N and do Nascimento-Marreiro D: Analysis
of plasma and erythrocyte zinc levels in premenopausal women with
breast cancer. Nutr Hosp. 26:293–297. 2011.PubMed/NCBI
|
12
|
Geraki K, Farquharson MJ and Bradley DA:
Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF
study. Phys Med Biol. 47:2327–2339. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lopez V, Foolad F and Kelleher SL:
ZnT2-overexpression represses the cytotoxic effects of zinc
hyper-accumulation in malignant metallothionein-null T47D breast
tumor cells. Cancer Lett. 304:41–51. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
McCormick NH, Hennigar SR, Kiselyov K and
Kelleher SL: The biology of zinc transport in mammary epithelial
cells: Implications for mammary gland development, lactation, and
involution. J Mammary Gland Biol Neoplasia. 19:59–71. 2014.
View Article : Google Scholar
|
15
|
Jezierska-Drutel A, Rosenzweig SA and
Neumann CA: Role of oxidative stress and the microenvironment in
breast cancer development and progression. Adv Cancer Res.
119:107–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Formigari A, Gregianin E and Irato P: The
effect of zinc and the role of p53 in copper-induced cellular
stress responses. J Appl Toxicol. 33:527–536. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Eide DJ: The oxidative stress of zinc
deficiency. Metallomics. 3:1124–1129. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hadler-Olsen E, Winberg JO and
Uhlin-Hansen L: Matrix metal-loproteinases in cancer: their value
as diagnostic and prognostic markers and therapeutic targets.
Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Grattan BJ and Freake HC: Zinc and cancer:
Implications for LIV-1 in breast cancer. Nutrients. 4:648–675.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lopez V and Kelleher SL: Zip6-attenuation
promotes epithelial-to-mesenchymal transition in ductal breast
tumor (T47D) cells. Exp Cell Res. 316:366–375. 2010. View Article : Google Scholar
|
21
|
Shen H, Qin H and Guo J: Concordant
correlation of LIV-1 and E-cadherin expression in human breast
cancer cell MCF-7. Mol Biol Rep. 36:653–659. 2009. View Article : Google Scholar
|
22
|
Sussman D, Smith LM, Anderson ME, Duniho
S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L,
Van Epps HA, et al: SGN-LIV1A: A novel antibody-drug conjugate
targeting LIV-1 for the treatment of metastatic breast cancer. Mol
Cancer Ther. 13:2991–3000. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bostanci Z, Alam S, Soybel DI and Kelleher
SL: Prolactin receptor attenuation induces zinc pool redistribution
through ZnT2 and decreases invasion in MDA-MB-453 breast cancer
cells. Exp Cell Res. 321:190–200. 2014. View Article : Google Scholar
|
24
|
Chowanadisai W, Lönnerdal B and Kelleher
SL: Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under
resting but not depolarizing conditions. Brain Res. 1199:10–19.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takatani-Nakase T, Matsui C, Maeda S,
Kawahara S and Takahashi K: High glucose level promotes migration
behavior of breast cancer cells through zinc and its transporters.
PLoS One. 9:e901362014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hogstrand C, Kille P, Ackland ML, Hiscox S
and Taylor KM: A mechanism for epithelial-mesenchymal transition
and anoikis resistance in breast cancer triggered by zinc channel
ZIP6 and STAT3 (signal transducer and activator of transcription
3). Biochem J. 455:229–237. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kasper G, Weiser AA, Rump A, Sparbier K,
Dahl E, Hartmann A, Wild P, Schwidetzky U, Castaños-Vélez E,
Lehmann K, et al: Expression levels of the putative zinc
transporter LIV-1 are associated with a better outcome of breast
cancer patients. Int J Cancer. 117:961–973. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Palmiter RD, Cole TB and Findley SD:
ZnT-2, a mammalian protein that confers resistance to zinc by
facilitating vesicular sequestration. EMBO J. 15:1784–1791.
1996.PubMed/NCBI
|
29
|
Yang J, Yoshizawa K, Nandi S and Tsubura
A: Protective effects of pregnancy and lactation against
N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis
rats. Carcinogenesis. 20:623–628. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Croxford TP, McCormick NH and Kelleher SL:
Moderate zinc deficiency reduces testicular Zip6 and Zip10
abundance and impairs spermatogenesis in mice. J Nutr. 141:359–365.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Russo J and Russo IH: Susceptibility of
the mammary gland to carcinogenesis. II. Pregnancy interruption as
a risk factor in tumor incidence. Am J Pathol. 100:497–512.
1980.PubMed/NCBI
|
32
|
Varin A, Larbi A, Dedoussis GV, Kanoni S,
Jajte J, Rink L, Monti D, Malavolta M, Marcellini F, Mocchegiani E,
et al: In vitro and in vivo effects of zinc on cytokine signalling
in human T cells. Exp Gerontol. 43:472–482. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hennigar SR, Seo YA, Sharma S, Soybel DI
and Kelleher SL: ZnT2 is a critical mediator of lysosomal-mediated
cell death during early mammary gland involution. Sci Rep.
5:80332015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Haricharan S and Li Y: STAT signaling in
mammary gland differentiation, cell survival and tumorigenesis. Mol
Cell Endocrinol. 382:560–569. 2014. View Article : Google Scholar
|
35
|
Patel II, Shearer DA, Fogarty SW, Fullwood
NJ, Quaroni L, Martin FL and Weisz J: Infrared microspectroscopy
identifies biomolecular changes associated with chronic oxidative
stress in mammary epithelium and stroma of breast tissues from
healthy young women: Implications for latent stages of breast
carcinogenesis. Cancer Biol Ther. 15:225–235. 2014. View Article : Google Scholar :
|
36
|
MacDiarmid CW, Taggart J, Kerdsomboon K,
Kubisiak M, Panascharoen S, Schelble K and Eide DJ: Peroxiredoxin
chaperone activity is critical for protein homeostasis in
zinc-deficient yeast. J Biol Chem. 288:31313–31327. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Provenzano PP, Inman DR, Eliceiri KW,
Knittel JG, Yan L, Rueden CT, White JG and Keely PJ: Collagen
density promotes mammary tumor initiation and progression. BMC Med.
6:112008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Allen RG and Tresini M: Oxidative stress
and gene regulation. Free Radic Biol Med. 28:463–499. 2000.
View Article : Google Scholar : PubMed/NCBI
|