Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK
- Authors:
- Published online on: January 13, 2016 https://doi.org/10.3892/or.2016.4554
- Pages: 1941-1949
-
Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
5-Aza-2'-deoxycytidine (5-Aza-CdR) is currently acknowledged as a demethylation drug, and causes a certain degree of demethylation in a variety of cancer cells, including pancreatic cancer cells. Emodin, a traditional Chinese medicine (TCM), is an effective monomer extracted from rhubarb and has been reported to exhibit antitumor activity in different manners in pancreatic cancer. In the present study, we examined whether emodin caused demethylation and increased the demethylation of three tumor-suppressor genes P16, RASSF1A and ppENK with a high degree of methylation in pancreatic cancer when combined with 5-Aza-CdR. Our research showed that emodin inhibited the growth of pancreatic cancer Panc-1 cells in a dose- and time-dependent manner. Dot-blot results showed that emodin combined with 5-Aza-CdR significantly suppressed the expression of genome 5mC in PANC-1 cells. In order to verify the effect of methylation, methylation-specific PCR (MSP) and bisulfite genomic sequencing PCR (BSP) combined with TA were selected for the cloning and sequencing. Results of MSP and BSP confirmed that emodin caused faint demethylation, and 5-Aza-CdR had a certain degree of demethylation. When emodin was combined with 5-Aza-CdR, the demethylation was more significant. At the same time, fluorescent quantitative PCR and western blot analysis results confirmed that when emodin was combined with 5-Aza-CdR, the expression levels of P16, RASSF1A and ppENK were increased more significantly compared to either treatment alone. In contrast, the expression levels of DNA methyltransferase 1 (DNMT1) and DNMT3a were more significantly reduced with the combination treatment than the control or either agent alone, further proving that emodin in combination with 5-Aza-CdR enhanced the demethylation effect of 5-Aza-CdR by reducing the expression of methyltransferases. In conclusion, the present study confirmed that emodin in combination with 5-Aza-CdR enhanced the demethylation by 5-Aza-CdR of tumor-suppressor genes p16, RASSF1A and ppENK by reducing the expression of methyltransferases DNMT1 and DNMT3a.