1
|
Wei N, Serino G and Deng XW: The COP9
signalosome: More than a protease. Trends Biochem Sci. 33:592–600.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Petroski MD and Deshaies RJ: Function and
regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol.
6:9–20. 2005. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Merlet J, Burger J, Gomes JE and Pintard
L: Regulation of cullin-RING E3 ubiquitin-ligases by neddylation
and dimerization. Cell Mol Life Sci. 66:1924–1938. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zheng N, Schulman BA, Song L, Miller JJ,
Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, et al:
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin
ligase complex. Nature. 416:703–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Angers S, Li T, Yi X, MacCoss MJ, Moon RT
and Zheng N: Molecular architecture and assembly of the DDB1-CUL4A
ubiquitin ligase machinery. Nature. 443:590–593. 2006.PubMed/NCBI
|
6
|
Rabut G and Peter M: Function and
regulation of protein neddylation. 'Protein modifications: Beyond
the usual suspects' review series. EMBO Rep. 9:969–976. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wee S, Geyer RK, Toda T and Wolf DA: CSN
facilitates Cullin-RING ubiquitin ligase function by counteracting
auto-catalytic adapter instability. Nat Cell Biol. 7:387–391. 2005.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Emberley ED, Mosadeghi R and Deshaies RJ:
Deconjugation of Nedd8 from Cul1 is directly regulated by
Skp1-F-box and substrate, and the COP9 signalosome inhibits
deneddylated SCF by a noncatalytic mechanism. J Biol Chem.
287:29679–29689. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lingaraju GM, Bunker RD, Cavadini S, Hess
D, Hassiepen U, Renatus M, Fischer ES and Thomä NH: Crystal
structure of the human COP9 signalosome. Nature. 512:161–165. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Groisman R, Polanowska J, Kuraoka I,
Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K and Nakatani Y:
The ubiquitin ligase activity in the DDB2 and CSA complexes is
differentially regulated by the COP9 signalosome in response to DNA
damage. Cell. 113:357–367. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hannss R and Dubiel W: COP9 signalosome
function in the DDR. FEBS Lett. 585:2845–2852. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Reardon JT and Sancar A: Nucleotide
excision repair. Prog Nucleic Acid Res Mol Biol. 79:183–235. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Takedachi A, Saijo M and Tanaka K: DDB2
complex-mediated ubiquitylation around DNA damage is oppositely
regulated by XPC and Ku and contributes to the recruitment of XPA.
Mol Cell Biol. 30:2708–2723. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fousteri M, Vermeulen W, van Zeeland AA
and Mullenders LH: Cockayne syndrome A and B proteins
differentially regulate recruitment of chromatin remodeling and
repair factors to stalled RNA polymerase II in vivo. Mol Cell.
23:471–482. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shiloh Y: ATM: Expanding roles as a chief
guardian of genome stability. Exp Cell Res. 329:154–161. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Weber AM and Ryan AJ: ATM and ATR as
therapeutic targets in cancer. Pharmacol Ther. 149:124–138. 2015.
View Article : Google Scholar
|
17
|
Marti TM, Hefner E, Feeney L, Natale V and
Cleaver JE: H2AX phosphorylation within the G1 phase after UV
irradiation depends on nucleotide excision repair and not DNA
double-strand breaks. Proc Natl Acad Sci USA. 103:9891–9896. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wakasugi M, Sasaki T, Matsumoto M, Nagaoka
M, Inoue K, Inobe M, Horibata K, Tanaka K and Matsunaga T:
Nucleotide excision repair-dependent DNA double-strand break
formation and ATM signaling activation in mammalian quiescent
cells. J Biol Chem. 289:28730–28737. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Matsuoka S, Ballif BA, Smogorzewska A,
McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini
N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals
extensive protein networks responsive to DNA damage. Science.
316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S,
Robin P, Mietton F, Harel-Bellan A, Dimitrov S and Hamiche A: The
histone variant mH2A1.1 interferes with transcription by
down-regulating PARP-1 enzymatic activity. Genes Dev. 20:3324–3336.
2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang A, Petrov KO, Hyun ER, Liu Z, Gerber
SA and Myers LC: The Tlo proteins are stoichiometric components of
Candida albicans mediator anchored via the Med3 subunit. Eukaryot
Cell. 11:874–884. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hood EA, Kettenbach AN, Gerber SA and
Compton DA: Plk1 regulates the kinesin-13 protein Kif2b to promote
faithful chromosome segregation. Mol Biol Cell. 23:2264–2274. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu M, Kang S, Ray S, Jackson J, Zaitsev
AD, Gerber SA, Cuny GD and Glicksman MA: Kinetic, mechanistic, and
structural modeling studies of truncated wild-type leucine-rich
repeat kinase 2 and the G2019S mutant. Biochemistry. 50:9399–9408.
2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sano H, Peck GR, Kettenbach AN, Gerber SA
and Lienhard GE: Insulin-stimulated GLUT4 protein translocation in
adipocytes requires the Rab10 guanine nucleotide exchange factor
Dennd4C. J Biol Chem. 286:16541–16545. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Choi SH, Wright JB, Gerber SA and Cole MD:
Myc protein is stabilized by suppression of a novel E3 ligase
complex in cancer cells. Genes Dev. 24:1236–1241. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Balaganur V, Pathak NN, Lingaraju MC, More
AS, Latief N, Kumari RR, Kumar D and Tandan SK: Effect of
S-methylisothiourea, an inducible nitric oxide synthase inhibitor,
in joint pain and pathology in surgically induced model of
osteoarthritis. Connect Tissue Res. 55:367–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Füzesi-Levi MG, Ben-Nissan G, Bianchi E,
Zhou H, Deery MJ, Lilley KS, Levin Y and Sharon M: Dynamic
regulation of the COP9 signalosome in response to DNA damage. Mol
Cell Biol. 34:1066–1076. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Meir M, Galanty Y, Kashani L, Blank M,
Khosravi R, Fernández-Ávila MJ, Cruz-García A, Star A, Shochot L,
Thomas Y, et al: The COP9 signalosome is vital for timely repair of
DNA double-strand breaks. Nucleic Acids Res. 43:4517–4530. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Olsen JV, Vermeulen M, Santamaria A, Kumar
C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al:
Quantitative phosphoproteomics reveals widespread full
phosphorylation site occupancy during mitosis. Sci Signal.
3:ra32010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dephoure N, Zhou C, Villén J, Beausoleil
SA, Bakalarski CE, Elledge SJ and Gygi SP: A quantitative atlas of
mitotic phosphorylation. Proc Natl Acad Sci USA. 105:10762–10767.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bech-Otschir D, Kraft R, Huang X, Henklein
P, Kapelari B, Pollmann C and Dubiel W: COP9 signalosome-specific
phosphorylation targets p53 to degradation by the ubiquitin system.
EMBO J. 20:1630–1639. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang X, Menon S, Lykke-Andersen K, Tsuge
T, Di Xiao, Wang X, Rodriguez-Suarez RJ, Zhang H and Wei N: The
COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S
phase progression via deneddylation of SCF Cul1. Curr Biol.
12:667–672. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Berse M, Bounpheng M, Huang X, Christy B,
Pollmann C and Dubiel W: Ubiquitin-dependent degradation of Id1 and
Id3 is mediated by the COP9 signalosome. J Mol Biol. 343:361–370.
2004. View Article : Google Scholar : PubMed/NCBI
|