1
|
Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH
and Lee JS: Cancer statistics in Korea: incidence, mortality,
survival, and prevalence in 2011. Cancer Res Treat. 46:109–123.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yun JH, Lee HY, Park HW, Shin JW, Lee JM
and Park CY: The analysis of prognostic factors in patients with
epithelial ovarian cancer. Korean J Obstet Gynecol. 49:566–571.
2006.
|
3
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tummala MK and McGuire WP: Recurrent
ovarian cancer. Clin Adv Hematol Oncol. 3:723–736. 2005.PubMed/NCBI
|
5
|
Feki A, Berardi P, Bellingan G, Major A,
Krause KH, Petignat P, Zehra R, Pervaiz S and Irminger-Finger I:
Dissemination of intraperitoneal ovarian cancer: discussion of
mechanisms and demonstration of lymphatic spreading in ovarian
cancer model. Crit Rev Oncol Hematol. 72:1–9. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tan DS, Agarwal R and Kaye SB: Mechanisms
of transcoelomic metastasis in ovarian cancer. Lancet Oncol.
7:925–934. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jeon BH, Jang C, Han J, Kataru RP, Piao L,
Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, et al: Profound
but dysfunctional lymphangiogenesis via vascular endothelial growth
factor ligands from CD11b+ macrophages in advanced
ovarian cancer. Cancer Res. 68:1100–1109. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Balch C, Fang F, Matei DE, Huang TH-M and
Nephew KP: Minireview: epigenetic changes in ovarian cancer.
Endocrinology. 150:4003–4011. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim NH, Sung HY, Choi EN, Lyu D, Choi HJ,
Ju W and Ahn JH: Aberrant DNA methylation in the IFITM1 promoter
enhances the metastatic phenotype in an intraperitoneal xenograft
model of human ovarian cancer. Oncol Rep. 31:2139–2146.
2014.PubMed/NCBI
|
10
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:e32004.
|
11
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc B. 57:289–300. 1995.
|
12
|
Ganzfried BF, Riester M, Haibe-Kains B,
Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ,
Parmigiani G, et al: curatedOvarianData: clinically annotated data
for the ovarian cancer transcriptome. Database (Oxford).
2013:bat0132013. View Article : Google Scholar
|
13
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
14
|
Li L-C, Carroll PR and Dahiya R:
Epigenetic changes in prostate cancer: implication for diagnosis
and treatment. J Natl Cancer Inst. 97:103–115. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fukuda M: Rab27 and its effectors in
secretory granule exocytosis: a novel docking machinery composed of
a Rab27·effector complex. Biochem Soc Trans. 34:691–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kuroda TS, Fukuda M, Ariga H and Mikoshiba
K: The Slp homology domain of synaptotagmin-like proteins 1-4 and
Slac2 functions as a novel Rab27A binding domain. J Biol Chem.
277:9212–9218. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fukuda M and Mikoshiba K:
Synaptotagmin-like protein 1-3: a novel family of C-terminal-type
tandem C2 proteins. Biochem Biophys Res Commun. 281:1226–1233.
2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fukuda M, Saegusa C and Mikoshiba K: Novel
splicing isoforms of synaptotagmin-like proteins 2 and 3:
identification of the Slp homology domain. Biochem Biophys Res
Commun. 283:513–519. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Torii S, Takeuchi T, Nagamatsu S and Izumi
T: Rab27 effector granuphilin promotes the plasma membrane
targeting of insulin granules via interaction with syntaxin 1a. J
Biol Chem. 279:22532–22538. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu M, Kasai K, Nagashima K, Torii S,
Yokota-Hashimoto H, Okamoto K, Takeuchi T, Gomi H and Izumi T:
Exophilin4/Slp2-a targets glucagon granules to the plasma membrane
through unique Ca2+-inhibitory phospholipid-binding
activity of the C2A domain. Mol Biol Cell. 18:688–696. 2007.
View Article : Google Scholar :
|
21
|
Kuroda TS and Fukuda M: Rab27A-binding
protein Slp2-a is required for peripheral melanosome distribution
and elongated cell shape in melanocytes. Nat Cell Biol.
6:1195–1203. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yasuda T, Saegusa C, Kamakura S, Sumimoto
H and Fukuda M: Rab27 effector Slp2-a transports the apical
signaling molecule podocalyxin to the apical surface of MDCK II
cells and regulates claudin-2 expression. Mol Biol Cell.
23:3229–3239. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yasuda T and Fukuda M: Slp2-a controls
renal epithelial cell size through regulation of Rap-ezrin
signaling independently of Rab27. J Cell Sci. 127:557–570. 2014.
View Article : Google Scholar
|
24
|
Ho JR, Chapeaublanc E, Kirkwood L, Nicolle
R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F and Goud
B: Deregulation of Rab and Rab effector genes in bladder cancer.
PLoS One. 7:e394692012. View Article : Google Scholar : PubMed/NCBI
|