1
|
Hamza MA and Gilbert M: Targeted therapy
in gliomas. Curr Oncol Rep. 16:3792014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim YZ: Altered histone modifications in
gliomas. Brain Tumor Res Treat. 2:7–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Giese A, Bjerkvig R, Berens ME and
Westphal M: Cost of migration: Invasion of malignant gliomas and
implications for treatment. J Clin Oncol. 21:1624–1636. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chang E, Heo KS, Woo CH, Lee H, Le NT,
Thomas TN, Fujiwara K and Abe J: MK2 SUMOylation regulates actin
filament remodeling and subsequent migration in endothelial cells
by inhibiting MK2 kinase and HSP27 phosphorylation. Blood.
117:2527–2537. 2011. View Article : Google Scholar :
|
6
|
Kirfel G, Rigort A, Borm B and Herzog V:
Cell migration: Mechanisms of rear detachment and the formation of
migration tracks. Eur J Cell Biol. 83:717–724. 2004. View Article : Google Scholar
|
7
|
Hall A: The cytoskeleton and cancer.
Cancer Metastasis Rev. 28:5–14. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fedor-Chaiken M, Deschenes RJ and Broach
JR: SRV2, a gene required for RAS activation of adenylate cyclase
in yeast. Cell. 61:329–340. 1990. View Article : Google Scholar : PubMed/NCBI
|
9
|
Field J, Vojtek A, Ballester R, Bolger G,
Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli T, Powers S,
et al: Cloning and characterization of CAP, the S. cerevisiae gene
encoding the 70 kd adenylyl cyclase-associated protein. Cell.
61:319–327. 1990. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gerst JE, Ferguson K, Vojtek A, Wigler M
and Field J: CAP is a bifunctional component of the Saccharomyces
cerevisiae adenylyl cyclase complex. Mol Cell Biol. 11:1248–1257.
1991. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mintzer KA and Field J: Interactions
between adenylyl cyclase, CAP and RAS from Saccharomyces
cerevisiae. Cell Signal. 6:681–694. 1994. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nishida Y, Shima F, Sen H, Tanaka Y,
Yanagihara C, Yamawaki-Kataoka Y, Kariya K and Kataoka T:
Coiled-coil interaction of N-terminal 36 residues of
cyclase-associated protein with adenylyl cyclase is sufficient for
its function in Saccharomyces cerevisiae ras pathway. J Biol Chem.
273:28019–28024. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Freeman NL, Chen Z, Horenstein J, Weber A
and Field J: An actin monomer binding activity localizes to the
carboxyl-terminal half of the Saccharomyces cerevisiae
cyclase-associated protein. J Biol Chem. 270:5680–5685. 1995.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Cui X, Hu B, Lu C, Huang X, Cai J,
He S, Lv L, Cong X, Liu G, et al: Upregulated expression of CAP1 is
associated with tumor migration and metastasis in hepatocellular
carcinoma. Pathol Res Pract. 210:169–175. 2014. View Article : Google Scholar
|
15
|
Yu XF, Ni QC, Chen JP, Xu JF, Jiang Y,
Yang SY, Ma J, Gu XL, Wang H and Wang YY: Knocking down the
expression of adenylate cyclase-associated protein 1 inhibits the
proliferation and migration of breast cancer cells. Exp Mol Pathol.
96:188–194. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tan M, Song X, Zhang G, Peng A, Li X, Li
M, Liu Y and Wang C: Overexpression of adenylate cyclase-associated
protein 1 is associated with metastasis of lung cancer. Oncol Rep.
30:1639–1644. 2013.PubMed/NCBI
|
17
|
Li M, Yang X, Shi H, Ren H, Chen X, Zhang
S, Zhu J and Zhang J: Downregulated expression of the
cyclase-associated protein 1 (CAP1) reduces migration in esophageal
squamous cell carcinoma. Jpn J Clin Oncol. 43:856–864. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hubberstey AV and Mottillo EP:
Cyclase-associated proteins: CAPacity for linking signal
transduction and actin polymerization. FASEB J. 16:487–499. 2002.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Noegel AA, Blau-Wasser R, Sultana H,
Müller R, Israel L, Schleicher M, Patel H and Weijer CJ: The
cyclase-associated protein CAP as regulator of cell polarity and
cAMP signaling in Dictyostelium. Mol Biol Cell. 15:934–945. 2004.
View Article : Google Scholar :
|
20
|
Vojtek A, Haarer B, Field J, Gerst J,
Pollard TD, Brown S and Wigler M: Evidence for a functional link
between profilin and CAP in the yeast S. cerevisiae. Cell.
66:497–505. 1991. View Article : Google Scholar : PubMed/NCBI
|
21
|
Matviw H, Yu G and Young D: Identification
of a human cDNA encoding a protein that is structurally and
functionally related to the yeast adenylyl cyclase-associated CAP
proteins. Mol Cell Biol. 12:5033–5040. 1992. View Article : Google Scholar : PubMed/NCBI
|
22
|
Moriyama K and Yahara I: Human CAP1 is a
key factor in the recycling of cofilin and actin for rapid actin
turnover. J Cell Sci. 115:1591–1601. 2002.PubMed/NCBI
|
23
|
Loisel TP, Boujemaa R, Pantaloni D and
Carlier MF: Reconstitution of actin-based motility of Listeria and
Shigella using pure proteins. Nature. 401:613–616. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamazaki K, Takamura M, Masugi Y, Mori T,
Du W, Hibi T, Hiraoka N, Ohta T, Ohki M, Hirohashi S, et al:
Adenylate cyclase-associated protein 1 overexpressed in pancreatic
cancers is involved in cancer cell motility. Lab Invest.
89:425–432. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Krek W, Ewen ME, Shirodkar S, Arany Z,
Kaelin WG Jr and Livingston DM: Negative regulation of the
growth-promoting transcription factor E2F-1 by a stably bound
cyclin A-dependent protein kinase. Cell. 78:161–172. 1994.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lees E, Faha B, Dulic V, Reed SI and
Harlow E: Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with
p107 and E2F in a temporally distinct manner. Genes Dev.
6:1874–1885. 1992. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang J, Chenivesse X, Henglein B and
Bréchot C: Hepatitis B virus integration in a cyclin A gene in a
hepatocellular carcinoma. Nature. 343:555–557. 1990. View Article : Google Scholar : PubMed/NCBI
|
28
|
Barlat I, Fesquet D, Bréchot C, Henglein
B, Dupuy d'Angeac A, Vié A and Blanchard JM: Loss of the
G1-S control of cyclin A expression during tumoral
progression of Chinese hamster lung fibroblasts. Cell Growth
Differ. 4:105–113. 1993.PubMed/NCBI
|
29
|
Singh A and Settleman J: EMT, cancer stem
cells and drug resistance: An emerging axis of evil in the war on
cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Thiery JP: Epithelial-mesenchymal
transitions in development and pathologies. Curr Opin Cell Biol.
15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Song Y, Washington MK and Crawford HC:
Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal
transition in pancreatic cancer. Cancer Res. 70:2115–2125. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Huber MA, Kraut N and Beug H: Molecular
requirements for epithelial-mesenchymal transition during tumor
progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI
|