1
|
Hodorová I, Rybárová S, Solár P, Vecanová
J, Mihalik J, Bohus P, Mellová Y and Kluchová D: Multidrug
resistance proteins in renal cell carcinoma. Folia Biol.
54:187–192. 2008.
|
2
|
Motzer RJ, Russo P, Nanus DM and Berg WJ:
Renal cell carcinoma. Curr Probl Cancer. 21:185–232. 1997.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Rini BI and Atkins MB: Resistance to
targeted therapy in renal-cell carcinoma. Lancet Oncol.
10:992–1000. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Park EJ, Min KJ, Choi KS and Kwon TK:
Dicoumarol sensitizes renal cell carcinoma Caki cells to
TRAIL-induced apoptosis through down-regulation of Bcl-2, Mcl-1 and
c-FLIP in a NQO1-independent manner. Exp Cell Res. 323:144–154.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Han MA, Woo SM, Min KJ, Kim S, Park JW,
Kim DE, Kim SH, Choi YH and Kwon TK: 6-Shogaol enhances renal
carcinoma Caki cells to TRAIL-induced apoptosis through reactive
oxygen species-mediated cytochrome c release and down-regulation of
c-FLIP(L) expression. Chem Biol Interact. 228:69–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Motzer RJ, Hutson TE, Cella D, Reeves J,
Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, et
al: Pazopanib versus sunitinib in metastatic renal-cell carcinoma.
N Engl J Med. 369:722–731. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Keisner SV and Shah SR: Pazopanib: The
newest tyrosine kinase inhibitor for the treatment of advanced or
metastatic renal cell carcinoma. Drugs. 71:443–454. 2011.PubMed/NCBI
|
8
|
Gotink KJ, Rovithi M, de Haas RR,
Honeywell RJ, Dekker H, Poel D, Azijli K, Peters GJ, Broxterman HJ
and Verheul HM: Cross-resistance to clinically used tyrosine kinase
inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol.
38:119–129. 2015. View Article : Google Scholar
|
9
|
Juengel E, Kim D, Makarević J, Reiter M,
Tsaur I, Bartsch G, Haferkamp A and Blaheta RA: Molecular analysis
of sunitinib resistant renal cell carcinoma cells after sequential
treatment with RAD001 (everolimus) or sorafenib. J Cell Mol Med.
19:430–441. 2015. View Article : Google Scholar
|
10
|
Salomi MJ, Nair SC and Panikkar KR:
Inhibitory effects of Nigella sativa and saffron (Crocus sativus)
on chemical carcinogenesis in mice. Nutr Cancer. 16:67–72. 1991.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tiruppur Venkatachallam SK, Pattekhan H,
Divakar S and Kadimi US: Chemical composition of Nigella sativa L.
seed extracts obtained by supercritical carbon dioxide. J Food Sci
Technol. 47:598–605. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X
and Dong W: Thymoquinone inhibits growth and augments
5-fluorouracil-induced apoptosis in gastric cancer cells both in
vitro and in vivo. Biochem Biophys Res Commun. 417:864–868. 2012.
View Article : Google Scholar
|
13
|
Gali-Muhtasib H, Roessner A and
Schneider-Stock R: Thymoquinone: A promising anti-cancer drug from
natural sources. Int J Biochem Cell Biol. 38:1249–1253. 2006.
View Article : Google Scholar
|
14
|
Mi Y, Zhang C, Bu Y, Zhang Y, He L, Li H,
Zhu H, Li Y, Lei Y and Zhu J: DEPDC1 is a novel cell cycle related
gene that regulates mitotic progression. BMB Rep. 48:413–418. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Seo K, Ki SH and Shin SM: Methylglyoxal
induces mitochondrial dysfunction and cell death in liver. Toxicol
Res. 30:193–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wong RS: Apoptosis in cancer: From
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Raffo AJ, Perlman H, Chen MW, Day ML,
Streitman JS and Buttyan R: Overexpression of bcl-2 protects
prostate cancer cells from apoptosis in vitro and confers
resistance to androgen depletion in vivo. Cancer Res. 55:4438–4445.
1995.PubMed/NCBI
|
18
|
Shirley S and Micheau O: Targeting c-FLIP
in cancer. Cancer Lett. 332:141–150. 2013. View Article : Google Scholar
|
19
|
Wilkie-Grantham RP, Matsuzawa S and Reed
JC: Novel phosphorylation and ubiquitination sites regulate
reactive oxygen species-dependent degradation of anti-apoptotic
c-FLIP protein. J Biol Chem. 288:12777–12790. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Willis S, Day CL, Hinds MG and Huang DC:
The Bcl-2-regulated apoptotic pathway. J Cell Sci. 116:4053–4056.
2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Czabotar PE, Lessene G, Strasser A and
Adams JM: Control of apoptosis by the BCL-2 protein family:
Implications for physiology and therapy. Nat Rev Mol Cell Biol.
15:49–63. 2014. View
Article : Google Scholar
|
22
|
Labi V, Grespi F, Baumgartner F and
Villunger A: Targeting the Bcl-2-regulated apoptosis pathway by BH3
mimetics: A breakthrough in anticancer therapy? Cell Death Differ.
15:977–987. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tracey L, Pérez-Rosado A, Artiga MJ,
Camacho FI, Rodríguez A, Martínez N, Ruiz-Ballesteros E, Mollejo M,
Martinez B, Cuadros M, et al: Expression of the NF-kappaB targets
BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive
B-cell lymphomas, respectively. J Pathol. 206:123–134. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Catz SD and Johnson JL: Transcriptional
regulation of bcl-2 by nuclear factor kappa B and its significance
in prostate cancer. Oncogene. 20:7342–7351. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Heckman CA, Mehew JW and Boxer LM:
NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells.
Oncogene. 21:3898–3908. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang S, Hu J, Meng Q, Dong X, Wang K, Qi
Y, Chu C, Zhang X and Hou L: Daidzein induced apoptosis via
down-regulation of Bcl-2/Bax and triggering of the mitochondrial
pathway in BGC-823 cells. Cell Biochem Biophys. 65:197–202. 2013.
View Article : Google Scholar
|
27
|
Chen QY, Lu GH, Wu YQ, Zheng Y, Xu K, Wu
LJ, Jiang ZY, Feng R and Zhou JY: Curcumin induces mitochondria
pathway mediated cell apoptosis in A549 lung adenocarcinoma cells.
Oncol Rep. 23:1285–1292. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Slimen IB, Najar T, Ghram A, Dabbebi H,
Ben Mrad M and Abdrabbah M: Reactive oxygen species, heat stress
and oxidative-induced mitochondrial damage. A review. Int J
Hyperthermia. 30:513–523. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fleury C, Mignotte B and Vayssière JL:
Mitochondrial reactive oxygen species in cell death signaling.
Biochimie. 84:131–141. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cai J, Yang J and Jones DP: Mitochondrial
control of apoptosis: The role of cytochrome c. Biochim Biophys
Acta. 1366:139–149. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Banjerdpongchai R, Kongtawelert P,
Khantamat O, Srisomsap C, Chokchaichamnankit D, Subhasitanont P and
Svasti J: Mitochondrial and endoplasmic reticulum stress pathways
cooperate in zearalenone-induced apoptosis of human leukemic cells.
J Hematol Oncol. 3:502010. View Article : Google Scholar : PubMed/NCBI
|