1
|
Anderson DD and Stover PJ: SHMT1 and SHMT2
are functionally redundant in nuclear de novo thymidylate
biosynthesis. PLoS One. 4:e58392009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hebbring SJ, Chai Y, Ji Y, Abo RP, Jenkins
GD, Fridley B, Zhang J, Eckloff BW, Wieben ED and Weinshilboum RM:
Serine hydroxymethyltransferase 1 and 2: Gene sequence variation
and functional genomic characterization. J Neurochem. 120:881–890.
2012.PubMed/NCBI
|
3
|
Kim SK, Jung WH and Koo JS: Differential
expression of enzymes associated with serine/glycine metabolism in
different breast cancer subtypes. PLoS One. 9:e1010042014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee GY, Haverty PM, Li L, Kljavin NM,
Bourgon R, Lee J, Stern H, Modrusan Z, Seshagiri S, Zhang Z, et al:
Comparative oncogenomics identifies PSMB4 and SHMT2 as potential
cancer driver genes. Cancer Res. 74:3114–3126. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu XY and Lu L: Vitamin B6 deficiency,
genome instability and cancer. Asian Pac J Cancer Prev.
13:5333–5338. 2012. View Article : Google Scholar
|
6
|
Leivonen SK, Rokka A, Ostling P, Kohonen
P, Corthals GL, Kallioniemi O and Perälä M: Identification of
miR-193b targets in breast cancer cells and systems biological
analysis of their functional impact. Mol Cell Proteomics.
10:M110.0053222011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Antonov A, Agostini M, Morello M, Minieri
M, Melino G and Amelio I: Bioinformatics analysis of the serine and
glycine pathway in cancer cells. Oncotarget. 5:11004–11013. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ye J, Fan J, Venneti S, Wan YW, Pawel BR,
Zhang J, Finley LW, Lu C, Lindsten T, Cross JR, et al: Serine
catabolism regulates mitochondrial redox control during hypoxia.
Cancer Discov. 4:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ma FJ, Liu ZB, Hu X, Ling H, Li S, Wu J
and Shao ZM: Prognostic value of myeloid differentiation primary
response 88 and Toll-like receptor 4 in breast cancer patients.
PLoS One. 9:e1116392014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sørlie T, Wang Y, Xiao C, Johnsen H, Naume
B, Samaha RR and Børresen-Dale AL: Distinct molecular mechanisms
underlying clinically relevant subtypes of breast cancer: Gene
expression analyses across three different platforms. BMC Genomics.
7:1272006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goldhirsch A, Wood WC, Coates AS, Gelber
RD, Thürlimann B and Senn HJ; Panel members: Strategies for
subtypes - dealing with the diversity of breast cancer: Highlights
of the St. Gallen International Expert Consensus on the Primary
Therapy of Early Breast Cancer 2011. Ann Oncol. 22:1736–1747. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Reis-Filho JS and Tutt AN: Triple negative
tumours: A critical review. Histopathology. 52:108–118. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Carey LA, Perou CM, Livasy CA, Dressler
LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S,
et al: Race, breast cancer subtypes, and survival in the Carolina
Breast Cancer Study. JAMA. 295:2492–2502. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martinez-Chacin RC, Keniry M and Dearth
RK: Analysis of high fat diet induced genes during mammary gland
development: Identifying role players in poor prognosis of breast
cancer. BMC Res Notes. 7:5432014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tobin NP, Harrell JC, Lövrot J, Egyhazi
Brage S, Frostvik-Stolt M, Fernö M, Perou CM, Bergh J, Hatschek T
and Lindström LS; TEX Trialists Group: The molecular subtype and
tumor characteristics of breast cancer metastases significantly
influence patient post-relapse survival. Ann Oncol. Oct 31–2014.
View Article : Google Scholar
|
16
|
Saal LH, Johansson P, Holm K,
Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA,
Malmström P, Memeo L, et al: Poor prognosis in carcinoma is
associated with a gene expression signature of aberrant PTEN tumor
suppressor pathway activity. Proc Natl Acad Sci USA. 104:7564–7569.
2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Paik S, Shak S, Tang G, Kim C, Baker J,
Cronin M, Baehner FL, Walker MG, Watson D, Park T, et al: A
multigene assay to predict recurrence of tamoxifen-treated,
node-negative breast cancer. N Engl J Med. 351:2817–2826. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chang HY, Nuyten DS, Sneddon JB, Hastie T,
Tibshirani R, Sørlie T, Dai H, He YD, van't Veer LJ, Bartelink H,
et al: Robustness, scalability, and integration of a wound-response
gene expression signature in predicting breast cancer survival.
Proc Natl Acad Sci USA. 102:3738–3743. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Staaf J, Ringnér M, Vallon-Christersson J,
Jönsson G, Bendahl PO, Holm K, Arason A, Gunnarsson H, Hegardt C,
Agnarsson BA, et al: Identification of subtypes in human epidermal
growth factor receptor 2 - positive breast cancer reveals a gene
signature prognostic of outcome. J Clin Oncol. 28:1813–1820. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Teschendorff AE, Miremadi A, Pinder SE,
Ellis IO and Caldas C: An immune response gene expression module
identifies a good prognosis subtype in estrogen receptor negative
breast cancer. Genome Biol. 8:R1572007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu X, Zhang H, Lai L, Wang X, Loera S,
Xue L, He H, Zhang K, Hu S, Huang Y, et al: Ribonucleotide
reductase small subunit M2 serves as a prognostic biomarker and
predicts poor survival of colorectal cancers. Clin Sci.
124:567–578. 2013. View Article : Google Scholar :
|
22
|
Zhang H, Liu X, Warden CD, Huang Y, Loera
S, Xue L, Zhang S, Chu P, Zheng S and Yen Y: Prognostic and
therapeutic significance of ribonucleotide reductase small subunit
M2 in estrogen-negative breast cancers. BMC Cancer. 14:6642014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Harris L, Fritsche H, Mennel R, Norton L,
Ravdin P, Taube S, Somerfield MR, Hayes DF and Bast RC Jr; American
Society of Clinical Oncology: American Society of Clinical Oncology
2007 update of recommendations for the use of tumor markers in
breast cancer. J Clin Oncol. 25:5287–5312. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Deyarmin B, Kane JL, Valente AL, van Laar
R, Gallagher C, Shriver CD and Ellsworth RE: Effect of ASCO/CAP
guidelines for determining ER status on molecular subtype. Ann Surg
Oncol. 20:87–93. 2013. View Article : Google Scholar
|
25
|
Smeds J, Miller LD, Bjöhle J, Hall P,
Klaar S, Liu ET, Pawitan Y, Ploner A and Bergh J: Gene profile and
response to treatment. Ann Oncol. 16(Suppl 2): ii195–ii202. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ivshina AV, George J, Senko O, Mow B,
Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, et al:
Genetic reclassification of histologic grade delineates new
clinical subtypes of breast cancer. Cancer Res. 66:10292–10301.
2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM,
Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME and
Yu J: Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet. 365:671–679.
2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Desmedt C, Piette F, Loi S, Wang Y,
Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y,
d'Assignies MS, et al: Strong time dependence of the 76-gene
prognostic signature for node-negative breast cancer patients in
the TRANSBIG multicenter independent validation series. Clin Cancer
Res. 13:3207–3214. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
van de Vijver MJ, He YD, van't Veer LJ,
Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C,
Marton MJ, et al: A gene-expression signature as a predictor of
survival in breast cancer. N Engl J Med. 347:1999–2009. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES, et al: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
van't Veer LJ, Dai H, van de Vijver MJ, He
YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ,
Witteveen AT, et al: Gene expression profiling predicts clinical
outcome of breast cancer. Nature. 415:530–536. 2002. View Article : Google Scholar
|
32
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zwart SR, Jessup JM, Ji J and Smith SM:
Saturation diving alters folate status and biomarkers of DNA damage
and repair. PLoS One. 7:e310582012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang TC, Song YS, Wang H, Zhang J, Yu SF,
Gu YE, Chen T, Wang Y, Shen HQ and Jia G: Oxidative DNA damage and
global DNA hypomethylation are related to folate deficiency in
chromate manufacturing workers. J Hazard Mater. 213–214:440–446.
2012. View Article : Google Scholar
|
35
|
Garrow TA, Brenner AA, Whitehead VM, Chen
XN, Duncan RG, Korenberg JR and Shane B: Cloning of human cDNAs
encoding mitochondrial and cytosolic serine
hydroxymethyltransferases and chromosomal localization. J Biol
Chem. 268:11910–11916. 1993.PubMed/NCBI
|
36
|
Jain M, Nilsson R, Sharma S, Madhusudhan
N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha
VK: Metabolite profiling identifies a key role for glycine in rapid
cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Paone A, Marani M, Fiascarelli A, Rinaldo
S, Giardina G, Contestabile R, Paiardini A and Cutruzzolà F: SHMT1
knockdown induces apoptosis in lung cancer cells by causing uracil
misincorporation. Cell Death Dis. 5:e15252014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Amelio I, Cutruzzolá F, Antonov A,
Agostini M and Melino G: Serine and glycine metabolism in cancer.
Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|