1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yasemi M, Ahmadi MRH, Khajavikhan J,
Peyman H, Asadollahi KH, Yasemi MR and Hemati K: An 8 years
retrospective study of breast cancer incidence in Ilam province,
Western Iran. J Clin Diagn Res. 7:2923–2925. 2013.
|
3
|
Howard JH and Bland KI: Current management
and treatment strategies for breast cancer. Curr Opin Obstet
Gynecol. 24:44–48. 2012. View Article : Google Scholar
|
4
|
Are C, Rajaram S, Are M, Raj H, Anderson
BO, Chaluvarya Swamy R, Vijayakumar M, Song T, Pandey M, Edney JA,
et al: A review of global cancer burden: Trends, challenges,
strategies, and a role for surgeons. J Surg Oncol. 107:221–226.
2013. View Article : Google Scholar
|
5
|
Head J and Johnston SR: New targets for
therapy in breast cancer: Farnesyltransferase inhibitors. Breast
Cancer Res. 6:262–268. 2004. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Mann J: Natural products in cancer
chemotherapy: Past, present and future. Nat Rev Cancer. 2:143–148.
2002. View
Article : Google Scholar
|
7
|
Koehn FE and Carter GT: The evolving role
of natural products in drug discovery. Nat Rev Drug Discov.
4:206–220. 2005. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs over the 30 years from 1981 to 2010. J Nat
Prod. 75:311–335. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cragg GM and Newman DJ: Antineoplastic
agents from natural sources: Achievements and future directions.
Expert Opin Investig Drugs. 9:2783–2797. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Butler MS: The role of natural product
chemistry in drug discovery. J Nat Prod. 67:2141–2153. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kaczirek K, Schindl M, Weinhäusel A,
Scheuba C, Passler C, Prager G, Raderer M, Hamilton G, Mittlböck M,
Siegl V, et al: Cytotoxic activity of camptothecin and paclitaxel
in newly established continuous human medullary thyroid carcinoma
cell lines. J Clin Endocrinol Metab. 89:2397–2401. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huo J, Yang SP, Ding J and Yue JM: Two new
cytotoxic sesquiterpenoids from Eupatorium lindleyanum DC. J Integr
Plant Biol. 48:473–477. 2006. View Article : Google Scholar
|
13
|
Ji LL, Luo YM and Yan GL: Studies on the
antimicrobial activities of extracts from Eupatorium lindleyanum DC
against food spoilage and food-borne pathogens. Food Contr.
19:995–1001. 2008. View Article : Google Scholar
|
14
|
Ye G, Huang XY, Li ZX, Fan MS and Huang
CG: A new cadinane type sesquiterpene from Eupatorium lindleyanum
(Compositae). Biochem Syst Ecol. 36:741–744. 2008. View Article : Google Scholar
|
15
|
Wu SQ, Xu NY, Sun Q, Han HY and Zhang J:
Six New sesquiterpenes from Eupatorium lindleyanum. Helv Chim Acta.
95:1637–1644. 2012. View Article : Google Scholar
|
16
|
Wu SQ, Xu NY, Zhang J, Yao S and Chu CJ:
Three new acyclic diterpenoids from Eupatorium lindleyanum DC. J
Asian Nat Prod Res. 14:652–656. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ito K, Sakakibara Y, Haruna M and Lee KH:
Four new germacranolides from Eupatorium lindleyanum DC. Chem Lett.
8:1469–1472. 1979. View Article : Google Scholar
|
18
|
Charlot JF, Prétet JL, Haughey C and
Mougin C: Mitochondrial translocation of p53 and mitochondrial
membrane potential (ΔΨm) dissipation are early events in
staurosporine-induced apoptosis of wild type and mutated p53
epithelial cells. Apoptosis. 9:333–343. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Reers M, Smiley ST, Mottola-Hartshorn C,
Chen A, Lin M and Chen LB: Mitochondrial membrane potential
monitored by JC-1 dye. Methods Enzymol. 260:406–417. 1995.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kajiwara T, Takeuchi T, Ueki T, Moriyama
N, Ueki K, Kakizoe T and Kawabe K: Effect of Bcl-2 overexpression
in human prostate cancer cells in vitro and in vivo. Int J Urol.
6:520–525. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Henry-Mowatt J, Dive C, Martinou JC and
James D: Role of mitochondrial membrane permeabilization in
apoptosis and cancer. Oncogene. 23:2850–2860. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takeda K and Akira S: STAT family of
transcription factors in cytokine-mediated biological responses.
Cytokine Growth Factor Rev. 11:199–207. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gottlieb TM, Leal JF, Seger R, Taya Y and
Oren M: Cross-talk between Akt, p53 and Mdm2: Possible implications
for the regulation of apoptosis. Oncogene. 21:1299–1303. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Farha AK, Dhanya SR, Mangalam SN, Geetha
BS, Latha PG and Remani P: Deoxyelephantopin impairs growth of
cervical carcinoma SiHa cells and induces apoptosis by targeting
multiple molecular signaling pathways. Cell Biol Toxicol.
30:331–343. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li MH, Cha YN and Surh YJ: Peroxynitrite
induces HO-1 expression via PI3K/Akt-dependent activation of
NF-E2-related factor 2 in PC12 cells. Free Radic Biol Med.
41:1079–1091. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sheppard K, Kinross KM, Solomon B, Pearson
RB and Phillips WA: Targeting PI3 kinase/AKT/mTOR signaling in
cancer. Crit Rev Oncog. 17:69–95. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gao L, Wang Y, Xu Z, Li X, Wu J, Liu S,
Chu P, Sun Z, Sun B, Lin Y, et al: SZC017, a novel oleanolic acid
derivative, induces apoptosis and autophagy in human breast cancer
cells. Apoptosis. 20:1636–1650. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xavier CP, Lima CF, Preto A, Seruca R,
Fernandes-Ferreira M and Pereira-Wilson C: Luteolin, quercetin and
ursolic acid are potent inhibitors of proliferation and inducers of
apoptosis in both KRAS and BRAF mutated human colorectal cancer
cells. Cancer Lett. 281:162–170. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pu L, Amoscato AA, Bier ME and Lazo JS:
Dual G1 and G2 phase inhibition by a novel, selective Cdc25
inhibitor
7-chloro-6-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J Biol
Chem. 277:46877–46885. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chao JI, Kuo PC and Hsu TS:
Down-regulation of survivin in nitric oxide-induced cell growth
inhibition and apoptosis of the human lung carcinoma cells. J Biol
Chem. 279:20267–20276. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su M, Chung HY and Li Y:
6-O-Angeloylenolin induced cell-cycle arrest and apoptosis in human
nasopharyngeal cancer cells. Chem Biol Interact. 189:167–176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang CJ, Wang CS, Hung JY, Huang HW, Chia
YC, Wang PH, Weng CF and Huang MS: Pyrogallol induces G2-M arrest
in human lung cancer cells and inhibits tumor growth in an animal
model. Lung Cancer. 66:162–168. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Denault JB and Boatright K: Apoptosis in
Biochemistry and Structural Biology. 3–8 February 2004, Keystone,
CO, USA. IDrugs. 7:315–317. 2004.PubMed/NCBI
|
34
|
Scaffidi C, Fulda S, Srinivasan A, Friesen
C, Li F, Tomaselli KJ, Debatin KM, Krammer PH and Peter ME: Two
CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687. 1998.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lazebnik YA, Kaufmann SH, Desnoyers S,
Poirier GG and Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase
by a proteinase with properties like ICE. Nature. 371:346–347.
1994. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Schwarz M, Andrade-Navarro MA and Gross A:
Mitochondrial carriers and pores: Key regulators of the
mitochondrial apoptotic program? Apoptosis. 12:869–876. 2007.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Kauffmann-Zeh A, Rodriguez-Viciana P,
Ulrich E, Gilbert C, Coffer P, Downward J and Evan G: Suppression
of c-Myc-induced apoptosis by Ras signalling through PI(3)K and
PKB. Nature. 385:544–548. 1997. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Katayama K, Fujita N and Tsuruo T:
Akt/protein kinase B-dependent phosphorylation and inactivation of
WEE1Hu promote cell cycle progression at G2/M
transition. Mol Cell Biol. 25:5725–5737. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Weir NM, Selvendiran K, Kutala VK, Tong L,
Vishwanath S, Rajaram M, Tridandapani S, Anant S and Kuppusamy P:
Curcumin induces G2/M arrest and apoptosis in
cisplatin-resistant human ovarian cancer cells by modulating Akt
and p38 MAPK. Cancer Biol Ther. 6:178–184. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Asnaghi L, Calastretti A, Bevilacqua A,
D'Agnano I, Gatti G, Canti G, Delia D, Capaccioli S and Nicolin A:
Bcl-2 phosphory-lation and apoptosis activated by damaged
microtubules require mTOR and are regulated by Akt. Oncogene.
23:5781–5791. 2004. View Article : Google Scholar : PubMed/NCBI
|