1
|
Euhus DM, Gupta RK and Morton DL:
Induction of antibodies to a tumor-associated antigen by
immunization with a whole melanoma cell vaccine. Cancer Immunol
Immunother. 29:247–254. 1989. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chiang CL, Coukos G and Kandalaft LE:
Whole tumor antigen vaccines: Where are we? Vaccines (Basel).
3:344–372. 2015. View Article : Google Scholar
|
3
|
Nawrocki S and Mackiewicz A: genetically
modified tumour vaccines - where we are today. Cancer Treat Rev.
25:29–46. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ward S, Casey D, Labarthe MC, Whelan M,
Dalgleish A, Pandha H and Todryk S: Immunotherapeutic potential of
whole tumour cells. Cancer Immunol Immunother. 51:351–357. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Mach N and Dranoff G: Cytokine-secreting
tumor cell vaccines. Curr Opin Immunol. 12:571–575. 2000.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Copier J and Dalgleish A: Overview of
tumor cell-based vaccines. Int Rev Immunol. 25:297–319. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chiang CL, Benencia F and Coukos G: Whole
tumor antigen vaccines. Semin Immunol. 22:132–143. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Drake CG, Lipson EJ and Brahmer JR:
Breathing new life into immunotherapy: Review of melanoma, lung and
kidney cancer. Nat Rev Clin Oncol. 11:24–37. 2014. View Article : Google Scholar :
|
9
|
Hsueh EC, Essner R, Foshag LJ, Ollila DW,
gammon G, O'Day SJ, Boasberg PD, Stern SL, Ye X and Morton DL:
Prolonged survival after complete resection of disseminated
melanoma and active immunotherapy with a therapeutic cancer
vaccine. J Clin Oncol. 20:4549–4554. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Copier J and Dalgleish A: Whole-cell
vaccines: A failure or a success waiting to happen? Curr Opin Mol
Ther. 12:14–20. 2010.PubMed/NCBI
|
11
|
Kraman M, Bambrough PJ, Arnold JN, Roberts
EW, Magiera L, Jones JO, gopinathan A, Tuveson DA and Fearon DT:
Suppression of antitumor immunity by stromal cells expressing
fibroblast activation protein-alpha. Science. 330:827–830. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Speiser DE, Baumgaertner P, Barbey C,
Rubio-Godoy V, Moulin A, Corthesy P, Devevre E, Dietrich PY,
Rimoldi D, Liénard D, et al: A novel approach to characterize
clonality and differentiation of human melanoma-specific T cell
responses: Spontaneous priming and efficient boosting by
vaccination. J Immunol. 177:1338–1348. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Galili U: Discovery of the natural
anti-Gal antibody and its past and future relevance to medicine.
Xenotransplantation. 20:138–147. 2013.PubMed/NCBI
|
14
|
Park HM, Kim YW, Kim KJ, Kim YJ, Yang YH,
Jin JM, Kim YH, Kim BG, Shim H and Kim YG: Comparative N-linked
glycan analysis of wild-type and α1,3-galactosyltransferase gene
knock-out pig fibroblasts using mass spectrometry approaches. Mol
Cells. 38:65–74. 2015.
|
15
|
Galili U: Significance of the evolutionary
α1,3-galactosyltransferase (GGTA1) gene inactivation in preventing
extinction of apes and old world monkeys. J Mol Evol. 80:1–9. 2015.
View Article : Google Scholar
|
16
|
Qiu Y, Yun MM, Dong X, Xu M, Zhao R, Han
X, Zhou E, Yun F, Su W, Liu C, et al: Combination of
cytokine-induced killer and dendritic cells pulsed with antigenic
α-1,3-galactosyl epitope-enhanced lymphoma cell membrane for
effective B-cell lymphoma immunotherapy. Cytotherapy. 18:91–98.
2016. View Article : Google Scholar
|
17
|
Sato M, Kagoshima A, Saitoh I, Inada E,
Miyoshi K, Ohtsuka M, Nakamura S, Sakurai T and Watanabe S:
Generation of alpha-1,3-galactosyltransferase-deficient porcine
embryonic fibroblasts by CRISPR/Cas9-mediated knock-in of a small
mutated sequence and a targeted toxin-based selection system.
Reprod Domest Anim. 50:872–880. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimatsu Y, Yamada K, Horii W, Hirakata A,
Sakamoto Y, Waki S, Sano J, Saitoh T, Sahara H, Shimizu A, et al:
Production of cloned NIBS (Nippon Institute for Biological Science)
and α-1, 3-galactosyltransferase knockout MGH miniature pigs by
somatic cell nuclear transfer using the NIBS breed as surrogates.
Xenotransplantation. 20:157–164. 2013.PubMed/NCBI
|
19
|
Park CS, Oh SS, Kim YE, Choi SY, Lim HG,
Ahn H and Kim YJ: Anti-alpha-Gal antibody response following
xenogeneic heart valve implantation in adults. J Heart valve Dis.
22:222–229. 2013.PubMed/NCBI
|
20
|
Wilczek P, Lesiak A, Niemiec-Cyganek A,
Kubin B, Slomski R, Nozynski J, Wilczek G, Mzyk A and Gramatyka M:
Biomechanical properties of hybrid heart valve prosthesis utilizing
the pigs that do not express the galactose-α-1,3-galactose (α-Gal)
antigen derived tissue and tissue engineering technique. J Mater
Sci Mater Med. 26:53292015. View Article : Google Scholar
|
21
|
Galili U: Anti-Gal: An abundant human
natural antibody of multiple pathogeneses and clinical benefits.
Immunology. 140:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Saethre M, Schneider MK, Lambris JD,
Magotti P, Haraldsen G, Seebach JD and Mollnes TE: Cytokine
secretion depends on Galalpha (1,3)Gal expression in a pig-to-human
whole blood model. J Immunol. 180:6346–6353. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wilhite T, Ezzelarab C, Hara H, Long C,
Ayares D, Cooper DK and Ezzelarab M: The effect of Gal expression
on pig cells on the human T-cell xenoresponse. Xenotransplantation.
19:56–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zibara K, Awada Z, Dib L, El-Saghir J,
Al-Ghadban S, Ibrik A, El-Zein N and El-Sabban M: Anti-angiogenesis
therapy and gap junction inhibition reduce MDA-MB-231 breast cancer
cell invasion and metastasis in vitro and in vivo. Sci Rep.
5:125982015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin SS, Parker W, Everett ML and Platt JL:
Differential recognition by proteins of alpha-galactosyl residues
on endothelial cell surfaces. Glycobiology. 8:433–443. 1998.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Miguel A, Herrero MJ, Sendra L, Botella R,
Algás R, Sánchez M and Aliño SF: Comparative antitumor effect among
GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell
vaccines. Cancer Gene Ther. 20:576–581. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Golumbek PT, Azhari R, Jaffee EM, Levitsky
HI, Lazenby A, Leong K and Pardoll DM: Controlled release,
biodegradable cytokine depots: A new approach in cancer vaccine
design. Cancer Res. 53:5841–5844. 1993.PubMed/NCBI
|
28
|
Lu X, He J, Li X and Zhao Y: The
relationship between malignant and tumor-associated cells provides
a new strategy for targeted diagnosis and therapy. OncoImmunology.
2:e262952013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Abdel-Motal UM, Guay HM, Wigglesworth K,
Welsh RM and Galili U: Immunogenicity of influenza virus vaccine is
increased by anti-gal-mediated targeting to antigen-presenting
cells. J Virol. 81:9131–9141. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mangold A, Szerafin T, Hoetzenecker K,
Hacker S, Lichtenauer M, Niederpold T, Nickl S, Dworschak M, Blumer
R, Auer J, et al: Alpha-Gal specific Igg immune response after
implantation of bioprostheses. Thorac Cardiovasc Surg. 57:191–195.
2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Galili U, Repik PM, Anaraki F,
Mozdzanowska K, Washko G and gerhard W: Enhancement of antigen
presentation of influenza virus hemagglutinin by the natural human
anti-Gal antibody. Vaccine. 14:321–328. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Abdel-Motal U, Wang S, Lu S, Wigglesworth
K and Galili U: Increased immunogenicity of human immunodeficiency
virus gp120 engineered to express Galalpha1-3Galbeta1-4glcNAc-R
epitopes. J Virol. 80:6943–6951. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Henion TR, Gerhard W, Anaraki F and Galili
U: Synthesis of alpha-gal epitopes on influenza virus vaccines, by
recombinant alpha 1,3galactosyltransferase, enables the formation
of immune complexes with the natural anti-Gal antibody. Vaccine.
15:1174–1182. 1997. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zinkernagel RM, Ehl S, Aichele P, Oehen S,
Kündig T and Hengartner H: Antigen localisation regulates immune
responses in a dose- and time-dependent fashion: A geographical
view of immune reactivity. Immunol Rev. 156:199–209. 1997.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Thomas DA and Massagué J: TGF-beta
directly targets cytotoxic T cell functions during tumor evasion of
immune surveillance. Cancer Cell. 8:369–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamaguchi Y, Tsumura H, Miwa M and Inaba
K: Contrasting effects of TGF-beta 1 and TNF-alpha on the
development of dendritic cells from progenitors in mouse bone
marrow. Stem Cells. 15:144–153. 1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Steinman RM, Hawiger D, Liu K, Bonifaz L,
Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, et
al: Dendritic cell function in vivo during the steady state: A role
in peripheral tolerance. Ann NY Acad Sci. 987:15–25. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Rook AH, Kehrl JH, Wakefield LM, Roberts
AB, Sporn MB, Burlington DB, Lane HC and Fauci AS: Effects of
transforming growth factor beta on the functions of natural killer
cells: Depressed cytolytic activity and blunting of interferon
responsiveness. J Immunol. 136:3916–3920. 1986.PubMed/NCBI
|
39
|
Ikeda H, Old LJ and Schreiber RD: The
roles of IFN gamma in protection against tumor development and
cancer immunoediting. Cytokine Growth Factor Rev. 13:95–109. 2002.
View Article : Google Scholar : PubMed/NCBI
|
40
|
De Giovanni C, Nicoletti G, Landuzzi L,
Astolfi A, Croci S, Comes A, Ferrini S, Meazza R, Iezzi M, Di Carlo
E, et al: Immunoprevention of HER-2/neu transgenic mammary
carcinoma through an interleukin 12-engineered allogeneic cell
vaccine. Cancer Res. 64:4001–4009. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sun Y, Jurgovsky K, Möller P, Alijagic S,
Dorbic T, Georgieva J, Wittig B and Schadendorf D: Vaccination with
IL-12 gene-modified autologous melanoma cells: Preclinical results
and a first clinical phase I study. Gene Ther. 5:481–490. 1998.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Fuji N, Fujiwara H, Ueda Y, Taniguchi F,
Yoshimura T, Oka T and Yamagishi H: Augmentation of local antitumor
immunity in the liver by tumor vaccine modified to secrete murine
interleukin 12. Gene Ther. 6:1120–1127. 1999. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lai C, Ye B, Hou X, Duan S, Wei X, Chen C,
Zeng X, Liang W, Zhou S, Hu N, et al: Anti-tumor effect of folic
acid-conjugated chitosan nanoparticles containing IL-33 gene in
hepatocellular carcinoma. Cell Conmmun. 1:30–40. 2014.
|