1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chekerov R, Braicu I, Castillo-Tong DC,
Richter R, Cadron I, Mahner S, Woelber L, Marth C, Van Gorp T,
Speiser P, et al: Outcome and clinical management of 275 patients
with advanced ovarian cancer International Federation of Obstetrics
and Gynecology II to IV inside the European Ovarian Cancer
Translational Research Consortium-OVCAD. Int J Gynecol Cancer.
23:268–275. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Peiretti M, Bristow RE, Zapardiel I,
Gerardi M, Zanagnolo V, Biffi R, Landoni F, Bocciolone L, Aletti GD
and Maggioni A: Rectosigmoid resection at the time of primary
cytoreduction for advanced ovarian cancer. A multi-center analysis
of surgical and oncological outcomes. Gynecol Oncol. 126:220–223.
2012.
|
4
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:5821–5828.
2003.PubMed/NCBI
|
6
|
Zhang S, Balch C, Chan MW, Lai HC, Matei
D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and
characterization of ovarian cancer-initiating cells from primary
human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Iwasaki H and Suda T: Cancer stem cells
and their niche. Cancer Sci. 100:1166–1172. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao J: Cancer stem cells and
chemoresistance: The smartest survives the raid. Pharmacol Ther.
160:145–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gao MQ, Choi YP, Kang S, Youn JH and Cho
NH: CD24+ cells from hierarchically organized ovarian
cancer are enriched in cancer stem cells. Oncogene. 29:2672–2680.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Curley MD, Therrien VA, Cummings CL,
Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden
DT, Rueda BR, et al: CD133 expression defines a tumor initiating
cell population in primary human ovarian cancer. Stem Cells.
27:2875–2883. 2009.PubMed/NCBI
|
11
|
Moserle L, Indraccolo S, Ghisi M, Frasson
C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R,
Corradin A, et al: The side population of ovarian cancer cells is a
primary target of IFN-alpha antitumor effects. Cancer Res.
68:5658–5668. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Baba T, Convery PA, Matsumura N, Whitaker
RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, et al:
Epigenetic regulation of CD133 and tumorigenicity of
CD133+ ovarian cancer cells. Oncogene. 28:209–218. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Esposti MD: The roles of Bid. Apoptosis.
7:433–440. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Luo X, Budihardjo I, Zou H, Slaughter C
and Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c
release from mitochondria in response to activation of cell surface
death receptors. Cell. 94:481–490. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu X, Kim CN, Yang J, Jemmerson R and
Wang X: Induction of apoptotic program in cell-free extracts:
Requirement for dATP and cytochrome c. Cell. 86:147–157. 1996.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li H, Zhu H, Xu CJ and Yuan J: Cleavage of
BID by caspase 8 mediates the mitochondrial damage in the Fas
pathway of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hu BG, Liu LP, Chen GG, Ye CG, Leung KK,
Ho RL, Lin MC and Lai PB: Therapeutic efficacy of improved
α-fetoprotein promoter-mediated tBid delivered by
folate-PEI600-cyclodextrin nanopolymer vector in hepatocellular
carcinoma. Exp Cell Res. 324:183–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cristofanon S and Fulda S: ABT-737
promotes tBid mitochondrial accumulation to enhance TRAIL-induced
apoptosis in glioblastoma cells. Cell Death Dis. 3:e4322012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Stricklett PK, Nelson RD and Kohan DE:
Site-specific recombination using an epitope tagged bacteriophage
P1 Cre recombinase. Gene. 215:415–423. 1998.PubMed/NCBI
|
20
|
Kanegae Y, Lee G, Sato Y, Tanaka M, Nakai
M, Sakaki T, Sugano S and Saito I: Efficient gene activation in
mammalian cells by using recombinant adenovirus expressing
site-specific Cre recombinase. Nucleic Acids Res. 23:3816–3821.
1995. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou L, Wei X, Cheng L, Tian J and Jiang
JJ: CD133, one of the markers of cancer stem cells in Hep-2 cell
line. Laryngoscope. 117:455–460. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Long H, Xie R, Xiang T, Zhao Z, Lin S,
Liang Z, Chen Z and Zhu B: Autocrine CCL5 signaling promotes
invasion and migration of CD133+ ovarian cancer
stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells.
30:2309–2319. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kanegae Y, Makimura M and Saito I: A
simple and efficient method for purification of infectious
recombinant adenovirus. Jpn J Med Sci Biol. 47:157–166. 1994.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Peichev M, Naiyer AJ, Pereira D, Zhu Z,
Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, et al:
Expression of VEGFR-2 and AC133 by circulating human
CD34+ cells identifies a population of functional
endothelial precursors. Blood. 95:952–958. 2000.PubMed/NCBI
|
25
|
Uchida N, Buck DW, He D, Reitsma MJ, Masek
M, Phan TV, Tsukamoto AS, Gage FH and Weissman IL: Direct isolation
of human central nervous system stem cells. Proc Natl Acad Sci USA.
97:14720–14725. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Corbeil D, Röper K, Hellwig A, Tavian M,
Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW and Huttner WB:
The human AC133 hematopoietic stem cell antigen is also expressed
in epithelial cells and targeted to plasma membrane protrusions. J
Biol Chem. 275:5512–5520. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Weigmann A, Corbeil D, Hellwig A and
Huttner WB: Prominin, a novel microvilli-specific polytopic
membrane protein of the apical surface of epithelial cells, is
targeted to plasmalemmal protrusions of non-epithelial cells. Proc
Natl Acad Sci USA. 94:12425–12430. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Marsden CG, Wright MJ, Pochampally R and
Rowan BG: Breast tumor-initiating cells isolated from patient core
biopsies for study of hormone action. Methods Mol Biol.
590:363–375. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Maitland NJ and Collins AT: Prostate
cancer stem cells: A new target for therapy. J Clin Oncol.
26:2862–2870. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
O'Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature. 445:106–110. 2007.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li C, Lee CJ and Simeone DM:
Identification of human pancreatic cancer stem cells. Methods Mol
Biol. 568:161–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F and
Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic
stem cells. Nat Med. 12:1167–1174. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jin L, Lee EM, Ramshaw HS, Busfield SJ,
Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A,
et al: Monoclonal antibody-mediated targeting of CD123, IL-3
receptor alpha chain, eliminates human acute myeloid leukemic stem
cells. Cell Stem Cell. 5:31–42. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Smith LM, Nesterova A, Ryan MC, Duniho S,
Jonas M, Anderson M, Zabinski RF, Sutherland MK, Gerber HP, Van
Orden KL, et al: CD133/prominin-1 is a potential therapeutic target
for antibody-drug conjugates in hepatocellular and gastric cancers.
Br J Cancer. 99:100–109. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Deonarain MP, Kousparou CA and Epenetos
AA: Antibodies targeting cancer stem cells: A new paradigm in
immunotherapy? MAbs. 1:12–25. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bidlingmaier S, Zhu X and Liu B: The
utility and limitations of glycosylated human CD133 epitopes in
defining cancer stem cells. J Mol Med. 86:1025–1032. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Ueda K, Iwahashi M, Nakamori M, Nakamura
M, Matsuura I, Yamaue H and Tanimura H: Carcinoembryonic
antigen-specific suicide gene therapy of cytosine
deaminase/5-fluorocytosine enhanced by the Cre/loxP system in the
orthotopic gastric carcinoma model. Cancer Res. 61:6158–6162.
2001.PubMed/NCBI
|
38
|
Miao J, Chen GG, Chun SY, Yun JP, Chak EC,
Ho RL and Lai PB: Adenovirus-mediated tBid overexpression results
in therapeutic effects on p53-resistant hepatocellular carcinoma.
Int J Cancer. 119:1985–1993. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sato Y, Tanaka K, Lee G, Kanegae Y, Sakai
Y, Kaneko S, Nakabayashi H, Tamaoki T and Saito I: Enhanced and
specific gene expression via tissue-specific production of Cre
recombinase using adenovirus vector. Biochem Biophys Res Commun.
244:455–462. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Miao J, Chen GG, Chun SY, Chak EC and Lai
PB: Bid sensitizes apoptosis induced by chemotherapeutic drugs in
hepatocellular carcinoma. Int J Oncol. 25:651–659. 2004.PubMed/NCBI
|