1
|
Khan K, Cunningham D and Chau I: Targeting
angiogenic pathways in colorectal cancer: Complexities, challenges
and future directions. Curr Drug Targets. 18:56–71. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cunningham D, Atkin W, Lenz HJ, Lynch HT,
Minsky B, Nordlinger B and Starling N: Colorectal cancer. Lancet.
375:1030–1047. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qian WF, Guan WX, Gao Y, Tan JF, Qiao ZM,
Huang H and Xia CL: Inhibition of STAT3 by RNA interference
suppresses angiogenesis in colorectal carcinoma. Braz J Med Biol
Res. 44:1222–1230. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Freed EF and Baserga SJ: The C-terminus of
Utp4, mutated in childhood cirrhosis, is essential for ribosome
biogenesis. Nucleic Acids Res. 38:4798–4806. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sondalle SB and Baserga SJ: Human diseases
of the SSU processome. Biochim Biophys Acta. 1842:758–764. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Doudna JA and Rath VL: Structure and
function of the eukaryotic ribosome: The next frontier. Cell.
109:153–156. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Henras AK, Soudet J, Gérus M, Lebaron S,
Caizergues-Ferrer M, Mougin A and Henry Y: The post-transcriptional
steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci.
65:2334–2359. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dragon F, Gallagher JE, Compagnone-Post
PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE,
Shabanowitz J, Osheim Y, et al: A large nucleolar U3
ribonucleoprotein required for 18S ribosomal RNA biogenesis.
Nature. 417:967–970. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gallagher JE, Dunbar DA, Granneman S,
Mitchell BM, Osheim Y, Beyer AL and Baserga SJ: RNA polymerase I
transcription and pre-rRNA processing are linked by specific SSU
processome components. Genes Dev. 18:2506–2517. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Phipps KR, Charette J and Baserga SJ: The
small subunit processome in ribosome biogenesis - progress and
prospects. Wiley Interdiscip Rev RNA. 2:1–21. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu B, Mitchell GA and Richter A: Nucleolar
localization of cirhin, the protein mutated in North American
Indian childhood cirrhosis. Exp Cell Res. 311:218–228. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chagnon P, Michaud J, Mitchell G, Mercier
J, Marion JF, Drouin E, Rasquin-Weber A, Hudson TJ and Richter A: A
missense mutation (R565W) in cirhin (FLJ14728) in North American
Indian childhood cirrhosis. Am J Hum Genet. 71:1443–1449. 2002.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Drouin E, Russo P, Tuchweber B, Mitchell G
and Rasquin-Weber A: North American Indian cirrhosis in children: A
review of 30 cases. J Pediatr Gastroenterol Nutr. 31:395–404. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wilkins BJ, Lorent K, Matthews RP and Pack
M: p53-mediated biliary defects caused by knockdown of cirh1a, the
zebrafish homolog of the gene responsible for North American Indian
Childhood Cirrhosis. PLoS One. 8:e776702013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Muzny DM, Bainbridge MN, Chang K, Dinh HH,
Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF,
et al: Cancer Genome Atlas Network: Comprehensive molecular
characterization of human colon and rectal cancer. Nature.
487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Robinson MD and Oshlack A: A scaling
normalization method for differential expression analysis of
RNA-seq data. Genome Biol. 11:R252010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu D, Huber W and Vitek O: Shrinkage
estimation of dispersion in Negative Binomial models for RNA-seq
experiments with small sample size. Bioinformatics. 29:1275–1282.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Robinson MD and Smyth GK: Small-sample
estimation of negative binomial dispersion, with applications to
SAGE data. Biostatistics. 9:321–332. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lund SP, Nettleton D, McCarthy DJ and
Smyth GK: Detecting differential expression in RNA-sequence data
using quasi-likelihood with shrunken dispersion estimates. Stat
Appl Genet Mol Biol. 11:307–314. 2012.
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lois C, Hong EJ, Pease S, Brown EJ and
Baltimore D: Germline transmission and tissue-specific expression
of transgenes delivered by lentiviral vectors. Science.
295:868–872. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Laemmli UK: Cleavage of structural
proteins during the assembly of the head of bacteriophage T4.
Nature. 227:680–685. 1970. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou Y, Su Z, Huang Y, Sun T, Chen S, Wu
T, Chen G, Xie X, Li B and Du Z: The Zfx gene is expressed in human
gliomas and is important in the proliferation and apoptosis of the
human malignant glioma cell line U251. J Exp Clin Cancer Res.
30:1142011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Milner AE, Levens JM and Gregory CD: Flow
cytometric methods of analyzing apoptotic cells. Methods Mol Biol.
80:347–354. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bétard C, Rasquin-Weber A, Brewer C,
Drouin E, Clark S, Verner A, Darmond-Zwaig C, Fortin J, Mercier J,
Chagnon P, et al: Localization of a recessive gene for North
American Indian childhood cirrhosis to chromosome region 16q22-and
identification of a shared haplotype. Am J Hum Genet. 67:222–228.
2000. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Prieto JL and McStay B: Recruitment of
factors linking transcription and processing of pre-rRNA to NOR
chromatin is UBF-dependent and occurs independent of transcription
in human cells. Genes Dev. 21:2041–2054. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Richter A, Mitchell GA and Rasquin A:
North American Indian childhood cirrhosis (NAIC). Med Sci (Paris).
23:1002–1007. 2007.(In French). View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu B, Mitchell GA and Richter A: Cirhin
up-regulates a canonical NF-kappaB element through strong
interaction with Cirip/HIVEP1. Exp Cell Res. 315:3086–3098. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Freed EF, Prieto JL, McCann KL, McStay B
and Baserga SJ: NOL11, implicated in the pathogenesis of North
American Indian childhood cirrhosis, is required for pre-rRNA
transcription and processing. PLoS Genet. 8:e10028922012.
View Article : Google Scholar : PubMed/NCBI
|