Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review)
- Authors:
- Yassine Belloum
- Françoise Rannou-Bekono
- François B. Favier
-
Affiliations: DMEM, INRA, Univ. Montpellier, Montpellier 34060, France, EA 1274, Laboratoire ‘Mouvement, Sport, Santé’, Université de Rennes 2-ENS Rennes, Bruz 35170, France - Published online on: March 31, 2017 https://doi.org/10.3892/or.2017.5542
- Pages: 2543-2552
This article is mentioned in:
Abstract
Inui A: Cancer anorexia-cachexia syndrome: Current issues in research and management. CA Cancer J Clin. 52:72–91. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, Moore-Carrasco R, Fuster G, Busquets S and López-Soriano FJ: Cancer cachexia: The molecular mechanisms. Int J Biochem Cell Biol. 35:405–409. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tisdale MJ: Cachexia in cancer patients. Nat Rev Cancer. 2:862–871. 2002. View Article : Google Scholar : PubMed/NCBI | |
Costelli P and Baccino FM: Cancer cachexia: From experimental models to patient management. Curr Opin Clin Nutr Metab Care. 3:177–181. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 89:381–410. 2009. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ambrus JL, Ambrus CM, Mink IB and Pickren JW: Causes of death in cancer patients. J Med. 6:61–64. 1975.PubMed/NCBI | |
Burch GE, Phillips JH and Ansari A: The cachetic heart. A clinico-pathologic, electrocardiographic and roentgenographic entity. Dis Chest. 54:403–409. 1968. View Article : Google Scholar : PubMed/NCBI | |
Ewer MS and Ewer SM: Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 12:547–558. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kazemi-Bajestani SM, Becher H, Fassbender K, Chu Q and Baracos VE: Concurrent evolution of cancer cachexia and heart failure: Bilateral effects exist. J Cachexia Sarcopenia Muscle. 5:95–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Murphy KT: The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol. 310:H466–H477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian M, Nishijima Y, Asp ML, Stout MB, Reiser PJ and Belury MA: Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol. 37:347–353. 2010.PubMed/NCBI | |
Shadfar S, Couch ME, McKinney KA, Weinstein LJ, Yin X, Rodríguez JE, Guttridge DC and Willis M: Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo. Nutr Cancer. 63:749–762. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cosper PF and Leinwand LA: Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71:1710–1720. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama T, Ishikawa T, Okayama T, Oka K, Adachi S, Mizushima K, Kimura R, Okajima M, Sakai H, Sakamoto N, et al: Tumor inoculation site affects the development of cancer cachexia and muscle wasting. Int J Cancer. 137:2558–2565. 2015. View Article : Google Scholar : PubMed/NCBI | |
Springer J, Tschirner A, Haghikia A, von Haehling S, Lal H, Grzesiak A, Kaschina E, Palus S, Pötsch M, von Websky K, et al: Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J. 35:932–941. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tian M, Asp ML, Nishijima Y and Belury MA: Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int J Oncol. 39:1321–1326. 2011.PubMed/NCBI | |
Wysong A, Couch M, Shadfar S, Li L, Rodriguez JE, Asher S, Yin X, Gore M, Baldwin A, Patterson C, et al: NF-κB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol. 178:1059–1068. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sjöström M, Wretling ML, Karlberg I, Edén E and Lundholm K: Ultrastructural changes and enzyme activities for energy production in hearts concomitant with tumor-associated malnutrition. J Surg Res. 42:304–313. 1987. View Article : Google Scholar : PubMed/NCBI | |
Schäfer M, Oeing CU, Rohm M, Baysal-Temel E, Lehmann LH, Bauer R, Volz HC, Boutros M, Sohn D, Sticht C, et al: Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Mol Metab. 5:67–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
van der Velden J, Merkus D, Klarenbeek BR, James AT, Boontje NM, Dekkers DH, Stienen GJ, Lamers JM and Duncker DJ: Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction. Circ Res. 95:e85–e95. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bonne G, Carrier L, Richard P, Hainque B, Tesson F, Komajda M and Schwartz K: Génétique des cardiomyopathies hypertrophiques. Med Sci. 14:1054–1066. 1998. | |
Korte FS, Herron TJ, Rovetto MJ and McDonald KS: Power output is linearly related to MyHC content in rat skinned myocytes and isolated working hearts. Am J Physiol Heart Circ Physiol. 289:H801–H812. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ashrafian H, Frenneaux MP and Opie LH: Metabolic mechanisms in heart failure. Circulation. 116:434–448. 2007. View Article : Google Scholar : PubMed/NCBI | |
Manne ND, Lima M, Enos RT, Wehner P, Carson JA and Blough E: Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse. Int J Oncol. 42:2134–2140. 2013.PubMed/NCBI | |
Palus S, von Haehling S, Flach VC, Tschirner A, Doehner W, Anker SD and Springer J: Simvastatin reduces wasting and improves cardiac function as well as outcome in experimental cancer cachexia. Int J Cardiol. 168:3412–3418. 2013. View Article : Google Scholar : PubMed/NCBI | |
Trobec K, Palus S, Tschirner A, von Haehling S, Doehner W, Lainscak M, Anker SD and Springer J: Rosiglitazone reduces body wasting and improves survival in a rat model of cancer cachexia. Nutrition. 30:1069–1075. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, et al: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 142:531–543. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mühlfeld C, Das SK, Heinzel FR, Schmidt A, Post H, Schauer S, Papadakis T, Kummer W and Hoefler G: Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. PLoS One. 6:e204242011. View Article : Google Scholar : PubMed/NCBI | |
Hinch EC, Sullivan-Gunn MJ, Vaughan VC, McGlynn MA and Lewandowski PA: Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiquitin proteosome system in the cachectic heart muscle of nude mice. J Cachexia Sarcopenia Muscle. 4:287–293. 2013. View Article : Google Scholar : PubMed/NCBI | |
Borges FH, Marinello PC, Cecchini AL, Blegniski FP, Guarnier FA and Cecchini R: Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced cardiac cachexia. Pathophysiology. 21:257–265. 2014. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, Fontes-Oliveira CC, Toledo M, López-Soriano FJ and Busquets S: Cachexia: A problem of energetic inefficiency. J Cachexia Sarcopenia Muscle. 5:279–286. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bosaeus I, Daneryd P, Svanberg E and Lundholm K: Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer. 93:380–383. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lindmark L, Bennegård K, Edén E, Ekman L, Scherstén T, Svaninger G and Lundholm K: Resting energy expenditure in malnourished patients with and without cancer. Gastroenterology. 87:402–408. 1984.PubMed/NCBI | |
Aon MA and Cortassa S: Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med. 4:599–613. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS and Stanley WC: Myocardial fatty acid metabolism in health and disease. Physiol Rev. 90:207–258. 2010. View Article : Google Scholar : PubMed/NCBI | |
Madrazo JA and Kelly DP: The PPAR trio: Regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. 44:968–975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Drott C, Waldenström A and Lundholm K: Cardiac sensitivity and responsiveness to beta-adrenergic stimulation in experimental cancer and undernutrition. J Mol Cell Cardiol. 19:675–683. 1987. View Article : Google Scholar : PubMed/NCBI | |
Drott C and Lundholm K: Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats. J Surg Res. 49:62–68. 1990. View Article : Google Scholar : PubMed/NCBI | |
Montel-Hagen A, Blanc L, Boyer-Clavel M, Jacquet C, Vidal M, Sitbon M and Taylor N: The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood. 112:4729–4738. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yasumoto K, Mukaida N, Harada A, Kuno K, Akiyama M, Nakashima E, Fujioka N, Mai M, Kasahara T, Fujimoto-Ouchi K, et al: Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res. 55:921–927. 1995.PubMed/NCBI | |
Kanda T and Takahashi T: Interleukin-6 and cardiovascular diseases. Jpn Heart J. 45:183–193. 2004. View Article : Google Scholar : PubMed/NCBI | |
Saito S, Aikawa R, Shiojima I, Nagai R, Yazaki Y and Komuro I: Endothelin-1 induces expression of fetal genes through the interleukin-6 family of cytokines in cardiac myocytes. FEBS Lett. 456:103–107. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pajak B, Orzechowska S, Pijet B, Pijet M, Pogorzelska A, Gajkowska B and Orzechowski A: Crossroads of cytokine signaling - the chase to stop muscle cachexia. J Physiol Pharmacol. 59:(Suppl 9). 251–264. 2008.PubMed/NCBI | |
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI | |
Costelli P, Carbó N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argilés JM and Baccino FM: Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 92:2783–2789. 1993. View Article : Google Scholar : PubMed/NCBI | |
Johnston AJ, Murphy KT, Jenkinson L, Laine D, Emmrich K, Faou P, Weston R, Jayatilleke KM, Schloegel J, Talbo G, et al: Targeting of Fn14 prevents cancer-induced cachexia and prolongs survival. Cell. 162:1365–1378. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marin-Corral J, Fontes CC, Pascual-Guardia S, Sanchez F, Olivan M, Argilés JM, Busquets S, López-Soriano FJ and Barreiro E: Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. Antioxid Redox Signal. 12:365–380. 2010. View Article : Google Scholar : PubMed/NCBI | |
Busquets S, Fuster G, Ametller E, Olivan M, Figueras M, Costelli P, Carbó N, Argilés JM and López-Soriano FJ: Resveratrol does not ameliorate muscle wasting in different types of cancer cachexia models. Clin Nutr. 26:239–244. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gould DW, Lahart I, Carmichael AR, Koutedakis Y and Metsios GS: Cancer cachexia prevention via physical exercise: Molecular mechanisms. J Cachexia Sarcopenia Muscle. 4:111–124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mantovani G, Madeddu C, Macciò A, Gramignano G, Lusso MR, Massa E, Astara G and Serpe R: Cancer-related anorexia/cachexia syndrome and oxidative stress: An innovative approach beyond current treatment. Cancer Epidemiol Biomarkers Prev. 13:1651–1659. 2004.PubMed/NCBI | |
Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN, et al: Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol. 593:2017–2036. 2015. View Article : Google Scholar : PubMed/NCBI | |
Springer J, Tschirner A, Hartman K, von Haehling S, Anker SD and Doehner W: The xanthine oxidase inhibitor oxypurinol reduces cancer cachexia-induced cardiomyopathy. Int J Cardiol. 168:3527–3531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS and Jones LW: Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms. Circulation. 124:642–650. 2011. View Article : Google Scholar : PubMed/NCBI | |
Asp ML, Tian M, Wendel AA and Belury MA: Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer. 126:756–763. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gray S and Kim JK: New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab. 22:394–403. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M and Lopaschuk GD: Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail. 6:1039–1048. 2013. View Article : Google Scholar : PubMed/NCBI | |
Padrão AI, Moreira-Gonçalves D, Oliveira PA, Teixeira C, Faustino-Rocha AI, Helguero L, Vitorino R, Santos LL, Amado F, Duarte JA, et al: Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia. Arch Biochem Biophys. 567:13–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A and Freyssenet D: Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology. 150:286–294. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA and Rosenzweig A: Effects of myostatin deletion in aging mice. Aging Cell. 8:573–583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S and Molkentin JD: Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 121:419–425. 2010. View Article : Google Scholar : PubMed/NCBI | |
Willis MS, Schisler JC, Li L, Rodríguez JE, Hilliard EG, Charles PC and Patterson C: Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res. 105:80–88. 2009. View Article : Google Scholar : PubMed/NCBI | |
Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE, Rodriguez JE, Glass DJ and Patterson C: Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol. 296:H997–H1006. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ and Patterson C: Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 114:1058–1071. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto Y, Hoshino Y, Ito T, Nariai T, Mohri T, Obana M, Hayata N, Uozumi Y, Maeda M, Fujio Y, et al: Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res. 79:89–96. 2008. View Article : Google Scholar : PubMed/NCBI | |
Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M and Patterson C: The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol. 71:43–53. 2014. View Article : Google Scholar : PubMed/NCBI | |
Masiero E and Sandri M: Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy. 6:307–309. 2010. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI | |
Musolino V, Palus S, Tschirner A, Drescher C, Gliozzi M, Carresi C, Vitale C, Muscoli C, Doehner W, von Haehling S, et al: Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation. J Cachexia Sarcopenia Muscle. 7:555–566. 2016. View Article : Google Scholar : PubMed/NCBI | |
Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, et al: Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 6:66702015. View Article : Google Scholar : PubMed/NCBI | |
Judge SM, Wu CL, Beharry AW, Roberts BM, Ferreira LF, Kandarian SC and Judge AR: Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer. 14:9972014. View Article : Google Scholar : PubMed/NCBI | |
Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, et al: The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem. 280:20814–20823. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, et al: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li H, Malhotra S and Kumar A: Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl). 86:1113–1126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Razeghi P, Wang ME, Youker KA, Golfman L, Stepkowski S and Taegtmeyer H: Lack of NF-kappaB1 (p105/p50) attenuates unloading-induced downregulation of PPARalpha and PPARalpha-regulated gene expression in rodent heart. Cardiovasc Res. 74:133–139. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sack MN, Rader TA, Park S, Bastin J, McCune SA and Kelly DP: Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 94:2837–2842. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shao D, Oka S, Liu T, Zhai P, Ago T, Sciarretta S, Li H and Sadoshima J: A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab. 19:232–245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li YY, Chen D, Watkins SC and Feldman AM: Mitochondrial abnormalities in tumor necrosis factor-alpha-induced heart failure are associated with impaired DNA repair activity. Circulation. 104:2492–2497. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hamblin M, Chang L, Fan Y, Zhang J and Chen YE: PPARs and the cardiovascular system. Antioxid Redox Signal. 11:1415–1452. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gielen S, Schuler G and Adams V: Cardiovascular effects of exercise training: Molecular mechanisms. Circulation. 122:1221–1238. 2010. View Article : Google Scholar : PubMed/NCBI | |
Holloway TM, Bloemberg D, da Silva ML, Simpson JA, Quadrilatero J and Spriet LL: High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats. PLoS One. 10:e01211382015. View Article : Google Scholar : PubMed/NCBI | |
Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR and Maack C: Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 309:H345–H359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wisløff U, Loennechen JP, Falck G, Beisvag V, Currie S, Smith G and Ellingsen O: Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res. 50:495–508. 2001. View Article : Google Scholar : PubMed/NCBI | |
Burniston JG: Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. Proteomics. 9:106–115. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rafalski K, Abdourahman A and Edwards JG: Early adaptations to training: Upregulation of alpha-myosin heavy chain gene expression. Med Sci Sports Exerc. 39:75–82. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alves CR, da Cunha TF, da Paixão NA and Brum PC: Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci. 125:9–14. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gueritat J, Lefeuvre-Orfila L, Vincent S, Cretual A, Ravanat JL, Gratas-Delamarche A, Rannou-Bekono F and Rebillard A: Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation. Free Radic Biol Med. 77:95–105. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goh J, Tsai J, Bammler TK, Farin FM, Endicott E and Ladiges WC: Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS One. 8:e801232013. View Article : Google Scholar : PubMed/NCBI | |
Deuster PA, Morrison SD and Ahrens RA: Endurance exercise modifies cachexia of tumor growth in rats. Med Sci Sports Exerc. 17:385–392. 1985. View Article : Google Scholar : PubMed/NCBI | |
McGinnis GR, Ballmann C, Peters B, Nanayakkara G, Roberts M, Amin R and Quindry JC: Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury. Am J Physiol Heart Circ Physiol. 308:H1423–H1433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petersen AM and Pedersen BK: The anti-inflammatory effect of exercise. J Appl Physiol 1985. 98:1154–1162. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez J, Fernández-Verdejo R, Pierre N, Priem F and Francaux M: Endurance training attenuates catabolic signals induced by TNF-α in muscle of mice. Med Sci Sports Exerc. 48:227–234. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gomes EC, Silva AN and de Oliveira MR: Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev. 2012:7561322012. View Article : Google Scholar : PubMed/NCBI | |
Rebillard A, Lefeuvre-Orfila L, Gueritat J and Cillard J: Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic Biol Med. 60:115–124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chicco AJ, Schneider CM and Hayward R: Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol. 289:R424–R431. 2005. View Article : Google Scholar : PubMed/NCBI | |
Powers SK, Morton AB, Ahn B and Smuder AJ: Redox control of skeletal muscle atrophy. Free Radic Biol Med. 98:208–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ellison GM, Waring CD, Vicinanza C and Torella D: Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart. 98:5–10. 2012. View Article : Google Scholar : PubMed/NCBI | |
Constantinou C, de Fontes Oliveira CC, Mintzopoulos D, Busquets S, He J, Kesarwani M, Mindrinos M, Rahme LG, Argilés JM and Tzika AA: Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int J Mol Med. 27:15–24. 2011.PubMed/NCBI | |
Coffey VG and Hawley JA: The molecular bases of training adaptation. Sports Med. 37:737–763. 2007. View Article : Google Scholar : PubMed/NCBI | |
Scarpulla RC: Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 286:81–89. 2002. View Article : Google Scholar : PubMed/NCBI | |
Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M and Yamaguchi I: Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol. 283:H1750–H1760. 2002. View Article : Google Scholar : PubMed/NCBI | |
Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG and Young LH: Physiological role of AMP-activated protein kinase in the heart: Graded activation during exercise. Am J Physiol Endocrinol Metab. 285:E629–E636. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kraniou GN, Cameron-Smith D and Hargreaves M: Acute exercise and GLUT4 expression in human skeletal muscle: Influence of exercise intensity. J Appl Physiol 1985. 101:934–937. 2006. View Article : Google Scholar : PubMed/NCBI | |
DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M and Muslin AJ: Akt1 is required for physiological cardiac growth. Circulation. 113:2097–2104. 2006. View Article : Google Scholar : PubMed/NCBI | |
McMullen JR: Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease. Clin Exp Pharmacol Physiol. 35:349–354. 2008. View Article : Google Scholar : PubMed/NCBI | |
McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, Mollica JP, Zhang L, Zhang Y, Shioi T, et al: Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 104:612–617. 2007. View Article : Google Scholar : PubMed/NCBI | |
Santini MP, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, Slonimsky E, Salimova E, Delafontaine P, Song YH, et al: Enhancing repair of the mammalian heart. Circ Res. 100:1732–1740. 2007. View Article : Google Scholar : PubMed/NCBI |