A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma
- Authors:
- Francesca Megiorni
- Moreno Colaiacovo
- Samantha Cialfi
- Heather P. McDowell
- Alessandro Guffanti
- Simona Camero
- Armando Felsani
- Paul D. Losty
- Barry Pizer
- Rajeev Shukla
- Carlo Cappelli
- Eva Ferrara
- Antonio Pizzuti
- Anna Moles
- Carlo Dominici
-
Affiliations: Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, I-00161 Rome, Italy, Genomnia s.r.l., I-20091 Bresso, MI, Italy, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy, Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK, Department of Oncology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK, Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, L12 2AP Liverpool, UK, Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy - Published online on: June 6, 2017 https://doi.org/10.3892/or.2017.5701
- Pages: 3-20
-
Copyright: © Megiorni et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Irwin MS and Park JR: Neuroblastoma: Paradigm for precision medicine. Pediatr Clin North Am. 62:225–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, et al: INRG Task Force: The International Neuroblastoma Risk Group (INRG) classification system: An INRG Task Force report. J Clin Oncol. 27:289–297. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maris JM: Recent advances in neuroblastoma. N Engl J Med. 362:2202–2211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schwab M, Varmus HE, Bishop JM, Grzeschik KH, Naylor SL, Sakaguchi AY, Brodeur G and Trent J: Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature. 308:288–291. 1984. View Article : Google Scholar : PubMed/NCBI | |
Weiss WA, Aldape K, Mohapatra G, Feuerstein BG and Bishop JM: Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16:2985–2995. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yoshimoto M, De Toledo SR Caminada, Caran EM Monteiro, de Seixas MT, de Martino Lee ML, de Campos Vieira Abib S, Vianna SM, Schettini ST and Andrade J Anderson Duffles: MYCN gene amplification. Identification of cell populations containing double minutes and homogeneously staining regions in neuroblastoma tumors. Am J Pathol. 155:1439–1443. 1999. View Article : Google Scholar : PubMed/NCBI | |
Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, Felsani A and DAgnano I: MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis. 5:e10812014. View Article : Google Scholar : PubMed/NCBI | |
Kaneko Y, Suenaga Y, Islam SM, Matsumoto D, Nakamura Y, Ohira M, Yokoi S and Nakagawara A: Functional interplay between MYCN, NCYM, and OCT4 promotes aggressiveness of human neuroblastomas. Cancer Sci. 106:840–847. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lau DT, Flemming CL, Gherardi S, Perini G, Oberthuer A, Fischer M, Juraeva D, Brors B, Xue C, Norris MD, et al: MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma. Oncotarget. 6:15510–15523. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beltran H: The N-myc Oncogene: Maximizing its targets, regulation, and therapeutic potential. Mol Cancer Res. 12:815–822. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Yi R and Cullen BR: MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA. 100:9779–9784. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39(Database): D152–D157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL and Bray I: The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int. 29:101–119. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leichter AL, Sullivan MJ, Eccles MR and Chatterjee A: MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer. 16:152017. View Article : Google Scholar : PubMed/NCBI | |
Mei H, Lin ZY and Tong QS: The roles of microRNAs in neuroblastoma. World J Pediatr. 10:10–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, Davidoff AM and Stallings RL: MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 303:56–64. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM and Stallings RL: MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer. 11:332011. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Tsai YH, Fang Y and Tseng SH: Micro-RNA-21 regulates the sensitivity to cisplatin in human neuroblastoma cells. J Pediatr Surg. 47:1797–1805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, Lynch J, Bray IM, O'Meara A, Tracey L, et al: MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer. 107:967–976. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teillet MA, Kalcheim C and Le Douarin NM: Formation of the dorsal root ganglia in the avian embryo: Segmental origin and migratory behavior of neural crest progenitor cells. Dev Biol. 120:329–347. 1987. View Article : Google Scholar : PubMed/NCBI | |
Beckwith JB and Martin RF: Observations on the histopathology of neuroblastomas. J Pediatr Surg. 3:106–110. 1968. View Article : Google Scholar : PubMed/NCBI | |
Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ: miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36(Database): D154–D158. 2008. View Article : Google Scholar : PubMed/NCBI | |
Robinson MD and Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11:R252010. View Article : Google Scholar : PubMed/NCBI | |
Bullard JH, Purdom E, Hansen KD and Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 11:942010. View Article : Google Scholar : PubMed/NCBI | |
Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, et al: miRTarBase update 2014: An information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 42(D1): D78–D85. 2014. View Article : Google Scholar : PubMed/NCBI | |
Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol. 5:R12003. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Feng X and Stein L: A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11:R532010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang Q, Liu ZP, Wang Y, Wu LY, Chen L and Zhang XS: NOA: A novel network ontology analysis method. Nucleic Acids Res. 39:e872011. View Article : Google Scholar : PubMed/NCBI | |
Grant CE, Bailey TL and Noble WS: FIMO: Scanning for occurrences of a given motif. Bioinformatics. 27:1017–1018. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G and Durbin R: 1000 Genome Project Data Processing Subgroup: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25:2078–2079. 2009. View Article : Google Scholar : PubMed/NCBI | |
Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S and Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 26:407–415. 2008. View Article : Google Scholar : PubMed/NCBI | |
Megiorni F, Camero S, Ceccarelli S, McDowell HP, Mannarino O, Marampon F, Pizer B, Shukla R, Pizzuti A, Marchese C, et al: DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation. Oncotarget. 7:79342–79356. 2016.PubMed/NCBI | |
Afanasyeva EA, Hotz-Wagenblatt A, Glatting KH and Westermann F: New miRNAs cloned from neuroblastoma. BMC Genomics. 9:522008. View Article : Google Scholar : PubMed/NCBI | |
Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D, Vermeulen J, Kumps C, Schlierf S, De Preter K, Van Roy N, et al: MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene. 29:1394–1404. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bienertova-Vasku J, Mazanek P, Hezova R, Curdova A, Nekvindova J, Kren L, Sterba J and Slaby O: Extension of microRNA expression pattern associated with high-risk neuroblastoma. Tumour Biol. 34:2315–2319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Uppal A, Wightman SC, Mallon S, Oshima G, Pitroda SP, Zhang Q, Huang X, Darga TE, Huang L, Andrade J, et al: 14q32-encoded microRNAs mediate an oligometastatic phenotype. Oncotarget. 6:3540–3552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Chen R, Zhang Y, Fan W, Xiao F and Yan X: Low expression of circulating microRNA-328 is associated with poor prognosis in patients with acute myeloid leukemia. Diagn Pathol. 10:1092015. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Zheng Z, Zheng Y, Lu X, Xu L and Lin L: microRNA-328 is a favorable prognostic marker in human glioma via suppressing invasive and proliferative phenotypes of malignant cells. Int J Neurosci. 126:145–153. 2015. View Article : Google Scholar : PubMed/NCBI | |
Anwar SL, Albat C, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H and Lehmann U: Concordant hypermethylation of intergenic microRNA genes in human hepatocellular carcinoma as new diagnostic and prognostic marker. Int J Cancer. 133:660–670. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shi S, Lu Y, Qin Y, Li W, Cheng H, Xu Y, Xu J, Long J, Liu L, Liu C, et al: miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr Mol Med. 14:316–327. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karjalainen K, Jaalouk DE, Bueso-Ramos CE, Zurita AJ, Kuniyasu A, Eckhardt BL, Marini FC, Lichtiger B, OBrien S, Kantarjian HM, et al: Targeting neuropilin-1 in human leukemia and lymphoma. Blood. 117:920–927. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Choi AJ, Lee BH and Ting AH: Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS One. 6:e206282011. View Article : Google Scholar : PubMed/NCBI | |
Charlet J, Schnekenburger M, Brown KW and Diederich M: DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochem Pharmacol. 83:858–865. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mestdagh P, Boström AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, von Stedingk K, Ghesquière B, Schulte S, Dews M, et al: The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell. 40:762–773. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miao T, Wu D, Zhang Y, Bo X, Xiao F, Zhang X, Magoulas C, Subang MC, Wang P and Richardson PM: SOCS3 suppresses AP-1 transcriptional activity in neuroblastoma cells through inhibition of c-Jun N-terminal kinase. Mol Cell Neurosci. 37:367–375. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morgan K, Stewart AJ, Miller N, Mullen P, Muir M, Dodds M, Medda F, Harrison D, Langdon S and Millar RP: Gonadotropin-releasing hormone receptor levels and cell context affect tumor cell responses to agonist in vitro and in vivo. Cancer Res. 68:6331–6340. 2008. View Article : Google Scholar : PubMed/NCBI | |
Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, Liao YF, Hsu WM, Lee WT and Lee H: Calreticulin regulates VEGF-A in neuroblastoma cells. Mol Neurobiol. 52:758–770. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lodrini M, Oehme I, Schroeder C, Milde T, Schier MC, Kopp-Schneider A, Schulte JH, Fischer M, De Preter K, Pattyn F, et al: MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 41:6018–6033. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rihani A, Van Goethem A, Ongenaert M, De Brouwer S, Volders PJ, Agarwal S, De Preter K, Mestdagh P, Shohet J, Speleman F, et al: Genome wide expression profiling of p53 regulated miRNAs in neuroblastoma. Sci Rep. 5:90272015. View Article : Google Scholar : PubMed/NCBI | |
Murphy DM, Buckley PG, Bryan K, Das S, Alcock L, Foley NH, Prenter S, Bray I, Watters KM, Higgins D, et al: Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One. 4:e81542009. View Article : Google Scholar : PubMed/NCBI | |
Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, et al: MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer. 122:699–704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lovén J, Zinin N, Wahlström T, Müller I, Brodin P, Fredlund E, Ribacke U, Pivarcsi A, Påhlman S and Henriksson M: MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci USA. 107:1553–1558. 2010. View Article : Google Scholar : PubMed/NCBI | |
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, et al: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thorsen SB, Obad S, Jensen NF, Stenvang J and Kauppinen S: The therapeutic potential of microRNAs in cancer. Cancer J. 18:275–284. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, et al: Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One. 3:e22362008. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Dong Q, Fang Z, Chen X, Lu H, Wang K, Yin Y, Cai X, Zhao N, Chen J, et al: Identification of miRNAs that are associated with tumor metastasis in neuroblastoma. Cancer Biol Ther. 9:446–452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, Thor T, Vandesompele J, Eggert A, Schreiber S, et al: Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 38:5919–5928. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rahmann S, Martin M, Schulte JH, Köster J, Marschall T and Schramm A: Identifying transcriptional miRNA biomarkers by integrating high-throughput sequencing and real-time PCR data. Methods. 59:154–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, Lin WC, Shen CY, Huang CS, Hsieh FJ, et al: Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 14:362015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Hu Y, Fang JY and Xu J: Gain-of-function miRNA signature by mutant p53 associates with poor cancer outcome. Oncotarget. 7:11056–11066. 2016.PubMed/NCBI | |
Pehserl AM, Ress AL, Stanzer S, Resel M, Karbiener M, Stadelmeyer E, Stiegelbauer V, Gerger A, Mayr C, Scheideler M, et al: Comprehensive analysis of miRNome alterations in response to sorafenib treatment in colorectal cancer cells. Int J Mol Sci. 17:E20112016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhi H, Ma D and Li T: MiR-217 promoted the proliferation and invasion of glioblastoma by repressing YWHAG. Cytokine. 92:93–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kos A, Loohuis NF Olde, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM and Aschrafi A: A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One. 7:e310222012. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Pan M, Han L, Lu H, Hao X and Dong Q: miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett. 587:3729–3737. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al: Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 24:992–1009. 2010. View Article : Google Scholar : PubMed/NCBI | |
Müller S and Nowak K: Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. BioMed Res Int. 2014:9484082014. View Article : Google Scholar : PubMed/NCBI | |
Murphy DM, Buckley PG, Das S, Watters KM, Bryan K and Stallings RL: Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma. PLoS One. 6:e214362011. View Article : Google Scholar : PubMed/NCBI | |
Corvetta D, Chayka O, Gherardi S, DAcunto CW, Cantilena S, Valli E, Piotrowska I, Perini G and Sala A: Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications. J Biol Chem. 288:8332–8341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Buechner J and Einvik C: N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 10:1243–1253. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jackstadt R and Hermeking H: MicroRNAs as regulators and mediators of c-MYC function. Biochim Biophys Acta. 1849:544–553. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo L and Chen F: A challenge for miRNA: Multiple isomiRs in miRNAomics. Gene. 544:1–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iżycka-Świeszewska E, Drożyńska E, Rzepko R, Kobierska-Gulida G, Grajkowska W, Perek D and Balcerska A: Analysis of PI3K/AKT/mTOR signalling pathway in high risk neuroblastic tumours. Pol J Pathol. 61:192–198. 2010.PubMed/NCBI | |
King D, Yeomanson D and Bryant HE: PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 37:245–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, et al: Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget. 7:57525–57544. 2016.PubMed/NCBI |