Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells
- Authors:
- Lu Ding
- Rong Li
- Xiaoping Han
- Yubo Zhou
- Hua Zhang
- Yong Cui
- Wu Wang
- Jingping Bai
-
Affiliations: Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China, Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China, Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China, Department of Orthopedics, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang, P.R. China - Published online on: June 12, 2017 https://doi.org/10.3892/or.2017.5713
- Pages: 933-940
This article is mentioned in:
Abstract
Anderson ME: Update on survival in osteosarcoma. Orthop Clin North Am. 47:283–292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vos HI, Coenen MJ, Guchelaar HJ and Loo Te DM: The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov Today. 21:1775–1786. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kushlinskii NE, Fridman MV and Braga EA: Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry. 81:315–328. 2016.PubMed/NCBI | |
Li C, Cong Y, Liu X, Zhou X, Zhou G, Lu M, Shi X and Wu S: The progress of molecular diagnostics of osteosarcoma. Front Biosci. 21:20–30. 2016. View Article : Google Scholar | |
Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, et al: Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 26:390–401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carrano AC, Eytan E, Hershko A and Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1:193–199. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov LM, Yeh KH, Lee SJ, Sun H and Zhang H: p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr Biol. 9:661–664. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yu ZK, Gervais JL and Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc Natl Acad Sci USA. 95:11324–11329. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K and Nakayama KI: Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA. 100:10231–10236. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM and Tindall DJ: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 102:1649–1654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cui J, Bauzon F and Zhu L: A comparison between Skp2 and FOXO1 for their cytoplasmic localization by Akt1. Cell Cycle. 9:1021–1022. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, et al: Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19:2069–2081. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kratzat S, Nikolova V, Miething C, Hoellein A, Schoeffmann S, Gorka O, Pietschmann E, Illert AL, Ruland J, Peschel C, et al: Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. PLoS One. 7:e374332012. View Article : Google Scholar : PubMed/NCBI | |
Agarwal A, Bumm TG, Corbin AS, O'Hare T, Loriaux M, VanDyke J, Willis SG, Deininger J, Nakayama KI, Druker BJ, et al: Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Blood. 112:1960–1970. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Natsume T and Nakayama KI: Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 6:661–672. 2004. View Article : Google Scholar : PubMed/NCBI | |
Minamishima YA and Nakayama K and Nakayama K: Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res. 62:995–999. 2002.PubMed/NCBI | |
Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ and Germain D: Skp2B attenuates p53 function by inhibiting prohibitin. EMBO Rep. 11:220–225. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shim EH, Johnson L, Noh HL, Kim YJ, Sun H, Zeiss C and Zhang H: Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63:1583–1588. 2003.PubMed/NCBI | |
Sistrunk C, Kim SH, Wang X, Lee SH, Kim Y, Macias E and Rodriguez-Puebla ML: Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27Kip1 accumulation. Am J Pathol. 182:1854–1864. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pagano M: Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell. 14:414–416. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kullmann MK, Grubbauer C, Goetsch K, Jäkel H, Podmirseg SR, Trockenbacher A, Ploner C, Cato AC, Weiss C, Kofler R, et al: The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle. 12:2625–2635. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL and Elenitoba-Johnson KS: Expression of Skp2, a p27Kip1 ubiquitin ligase, in malignant lymphoma: Correlation with p27Kip1 and proliferation index. Blood. 100:2950–2956. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schüler S, Diersch S, Hamacher R, Schmid RM, Saur D and Schneider G: SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI | |
Chan CH, Lee SW, Wang J and Lin HK: Regulation of Skp2 expression and activity and its role in cancer progression. Sci World J. 10:1001–1015. 2010. View Article : Google Scholar | |
Hulit J, Lee RJ, Li Z, Wang C, Katiyar S, Yang J, Quong AA, Wu K, Albanese C, Russell R, et al: p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/beta-catenin signaling. Cancer Res. 66:8529–8541. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fujita T, Liu W, Doihara H, Date H and Wan Y: Dissection of the APCCdh1-Skp2 cascade in breast cancer. Clin Cancer Res. 14:1966–1975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Voduc D, Nielsen TO, Cheang MC and Foulkes WD: The combination of high cyclin E and Skp2 expression in breast cancer is associated with a poor prognosis and the basal phenotype. Hum Pathol. 39:1431–1437. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wei XL, Huang WH, Chen CF, Bai JW and Zhang GJ: Cytoplasmic Skp2 expression is associated with p-Akt1 and predicts poor prognosis in human breast carcinomas. PLoS One. 7:e526752012. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Chu PC, Chuang HC, Hung WC, Kulp SK and Chen CS: Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS One. 7:e472982012. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J and Zhu L: Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 24:645–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K and Mori M: Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: Modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 62:3819–3825. 2002.PubMed/NCBI | |
Benevenuto-de-Andrade BA, León JE, Carlos R, Delgado-Azañero W, Mosqueda-Taylor A and Paes-de-Almeida O: Immunohistochemical expression of Skp2 protein in oral nevi and melanoma. Med Oral Patol Oral Cir Bucal. 18:e388–e391. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F and Liu J: A signal transduction pathway from TGF-β1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol. 134:159–167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Cheng Y, Zhang Z, Martinka M and Li G: Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One. 6:e175782011. View Article : Google Scholar : PubMed/NCBI | |
Lu M, Ma J, Xue W, Cheng C, Wang Y, Zhao Y, Ke Q, Liu H, Liu Y, Li P, et al: The expression and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma. Pathol Oncol Res. 15:679–687. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu HM, Liang Y, Chen Q, Wu QN, Guo YM, Shen GP, Zhang RH, He ZW, Zeng YX, Xie FY, et al: Correlation of Skp2 overexpression to prognosis of patients with nasopharyngeal carcinoma from South China. Chin J Cancer. 30:204–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang FM, Chien CY, Li CF, Shiu WY, Chen CH and Huang HY: Effect of S phase kinase-associated protein 2 expression on distant metastasis and survival in nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 73:202–207. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liao QD, Zhong D and Chen Q: Protein expression of Skp2 in osteosarcoma and its relation with prognosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 33:606–611. 2008.(In Chinese). PubMed/NCBI | |
Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee SW, Jin G, Rezaeian AH, Han F, Wang J, et al: Skp2-macroH2A1-CDK8 axis orchestrates G2/M transition and tumorigenesis. Nat Commun. 6:66412015. View Article : Google Scholar : PubMed/NCBI | |
Lee SW, Li CF, Jin G, Cai Z, Han F, Chan CH, Yang WL, Li BK, Rezaeian AH, Li HY, et al: Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol Cell. 57:1022–1033. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T and Costa RH: Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 25:10875–10894. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Setoguchi T, Hirotsu M, Gao H, Sasaki H, Matsunoshita Y and Komiya S: Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer. 100:1957–1965. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hirotsu M, Setoguchi T, Sasaki H, Matsunoshita Y, Gao H, Nagao H, Kunigou O and Komiya S: Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer. 9:52010. View Article : Google Scholar : PubMed/NCBI | |
Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, Takizawa T, Nakashima K, Komiya S and Setoguchi T: Role of GLI2 in the growth of human osteosarcoma. J Pathol. 224:169–179. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Inuzuka H, Tseng A, Chin RY, Toker A and Wei W: Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 11:397–408. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, Yang WL, Erdjument-Bromage H, Nakayama KI, Nimer S, et al: Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 11:420–432. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang H: Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle. 9:868–869. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, et al: The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 149:1098–1111. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Sran A, Carroll DC, Huang J, Tsvetkov L, Zhou X, Sheung J, McLaughlin J, Issakani SD, Payan DG, et al: Developing structure-activity relationships from an HTS hit for inhibition of the Cks1-Skp2 protein-protein interaction. Bioorg Med Chem Lett. 25:5199–5202. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oh M, Lee JH, Moon H, Hyun YJ and Lim HS: A chemical inhibitor of the Skp2/p300 interaction that promotes p53-mediated apoptosis. Angew Chem Int Ed Engl. 55:602–606. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao JK, Wang LX, Long B, Ye XT, Su JN, Yin XY, Zhou XX and Wang ZW: Arsenic trioxide inhibits cell growth and invasion via down-regulation of Skp2 in pancreatic cancer cells. Asian Pac J Cancer Prev. 16:3805–3810. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin HP, Lin CY, Huo C, Hsiao PH, Su LC, Jiang SS, Chan TM, Chang CH, Chen LT, Kung HJ, et al: Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget. 6:6684–6707. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang HC, Lin CL and Lin JK: 1,2,3,4,6-penta-O-galloyl-β-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. J Agric Food Chem. 59:6765–6775. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jia T, Zhang L, Duan Y, Zhang M, Wang G, Zhang J and Zhao Z: The differential susceptibilities of MCF-7 and MDA-MB-231 cells to the cytotoxic effects of curcumin are associated with the PI3K/Akt-SKP2-Cip/Kips pathway. Cancer Cell Int. 14:1262014. View Article : Google Scholar : PubMed/NCBI | |
Sun SH, Huang HC, Huang C and Lin JK: Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur J Pharmacol. 690:22–30. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yokoyama NN, Zhang S, Ding L, Liu HM, Lilly MB, Mercola D and Zi X: Flavokawain A induces deNEDDylation and Skp2 degradation leading to inhibition of tumorigenesis and cancer progression in the TRAMP transgenic mouse model. Oncotarget. 6:41809–41824. 2015.PubMed/NCBI | |
Wang L, Ye X, Cai X, Su J, Ma R, Yin X, Zhou X, Li H and Wang Z: Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells. Oncotarget. 6:18027–18037. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li Q, He Y, Du H, Zhan Z, Zhao H, Shi J, Ye Q and Hu J: 15,16-dihydrotanshinone I induces apoptosis and inhibits the proliferation, migration of human osteosarcoma cell line 143B in vitro. Anticancer Agents Med Chem. 15:12015. View Article : Google Scholar | |
Li Z, Liu H, Li B, Zhang Y and Piao C: Saurolactam inhibits proliferation, migration, and invasion of human osteosarcoma cells. Cell Biochem Biophys. 72:719–726. 2015. View Article : Google Scholar : PubMed/NCBI |