Cancer drug delivery in the nano era: An overview and perspectives (Review)
- Authors:
- Zhen Li
- Shirui Tan
- Shuan Li
- Qiang Shen
- Kunhua Wang
-
Affiliations: Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China, College of Agricultural Sciences, Yunnan University, Kunming, Yunnan, P.R. China, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA - Published online on: June 14, 2017 https://doi.org/10.3892/or.2017.5718
- Pages: 611-624
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shanthi M: Global Status Report on Noncommunicable Diseases 2014. Geneva: WHO Press, World Health Organization; 2014 | |
LaVan DA, McGuire T and Langer R: Small-scale systems for in vivo drug delivery. Nat Biotechnol. 21:1184–1191. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Xiao Z, Kamaly N and Farokhzad OC: Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res. 44:1123–1134. 2011. View Article : Google Scholar : PubMed/NCBI | |
Langer R: New methods of drug delivery. Science. 249:1527–1533. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bangham AD, Standish MM and Watkins JC: Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 13:238–252. 1965. View Article : Google Scholar : PubMed/NCBI | |
James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ and Stewart JS: Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol). 6:294–296. 1994. View Article : Google Scholar : PubMed/NCBI | |
Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P and Hawkins MJ: Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 17:1263–1268. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF and Farokhzad OC: Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem Soc Rev. 41:2971–3010. 2012. View Article : Google Scholar : PubMed/NCBI | |
Burgess P, Hutt PB, Farokhzad OC, Langer R, Minick S and Zale S: On firm ground: IP protection of therapeutic nanoparticles. Nat Biotechnol. 28:1267–1270. 2010. View Article : Google Scholar : PubMed/NCBI | |
Farokhzad OC and Langer R: Impact of nanotechnology on drug delivery. ACS Nano. 3:16–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gulati M, Grover M, Singh S and Singh M: Lipophilic drug derivatives in liposomes. Int J Pharm. 165:129–168. 1998. View Article : Google Scholar | |
Scherphof G, Roerdink F, Waite M and Parks J: Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 542:296–307. 1978. View Article : Google Scholar : PubMed/NCBI | |
Allen TM and Cleland LG: Serum-induced leakage of liposome contents. Biochim Biophys Acta. 597:418–426. 1980. View Article : Google Scholar : PubMed/NCBI | |
Senior J and Gregoriadis G: Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett. 145:109–114. 1982. View Article : Google Scholar : PubMed/NCBI | |
Huang S-L and MacDonald RC: Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta. 1665:134–141. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ueno Y, Sonoda S, Suzuki R, Yokouchi M, Kawasoe Y, Tachibana K, Maruyama K, Sakamoto T and Komiya S: Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther. 12:270–277. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pak CC, Erukulla RK, Ahl PL, Janoff AS and Meers P: Elastase activated liposomal delivery to nucleated cells. Biochim Biophys Acta. 1419:111–126. 1999. View Article : Google Scholar : PubMed/NCBI | |
Meers P: Enzyme-activated targeting of liposomes. Adv Drug Deliv Rev. 53:265–272. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gerasimov OV, Boomer JA, Qualls MM and Thompson DH: Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev. 38:317–338. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bondurant B, Mueller A and O'Brien DF: Photoinitiated destabilization of sterically stabilized liposomes. Biochim Biophys Acta. 1511:113–122. 2001. View Article : Google Scholar : PubMed/NCBI | |
Du B, Han S, Li H, Zhao F, Su X, Cao X and Zhang Z: Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 7:5411–5426. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arie AA and Lee JK: Effect of boron doped fullerene C 60 film coating on the electrochemical characteristics of silicon thin film anodes for lithium secondary batteries. Synth Met. 161:158–165. 2011. View Article : Google Scholar | |
Dao TT, Matsushima T and Murata H: Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer. Org Electron. 13:2709–2715. 2012. View Article : Google Scholar | |
Papahadjopoulos D, Jacobson K, Nir S and Isac T: Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 311:330–348. 1973. View Article : Google Scholar : PubMed/NCBI | |
Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G and Sood AK: Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65:6910–6918. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miller CR, Bondurant B, McLean SD, McGovern KA and O'Brien DF: Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 37:12875–12883. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, et al: Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 25:1149–1157. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yu Y, Dai W, Lu J, Cui J, Wu H, Yuan L, Zhang H, Wang X, Wang J, et al: The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials. 33:8451–8460. 2012. View Article : Google Scholar : PubMed/NCBI | |
Irvine DJ: Drug delivery: One nanoparticle, one kill. Nat Mater. 10:342–343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang H, Wu Y, Li Y and Gao Y: A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des Devel Ther. 9:2265–2275. 2015.PubMed/NCBI | |
Liu Z, Xiong M, Gong J, Zhang Y, Bai N, Luo Y, Li L, Wei Y, Liu Y, Tan X, et al: Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun. 5:4280–4291. 2014.PubMed/NCBI | |
Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD and Ribas A: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464:1067–1070. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Lee MJ: Liposome mediated cancer gene therapy: Clinical trials and their lessons to stem cell therapy. Bull Korean Chem Soc. 33:433–442. 2012. View Article : Google Scholar | |
Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM and Danielsen M: Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 84:7413–7417. 1987. View Article : Google Scholar : PubMed/NCBI | |
Tari AM, Gutiérrez-Puente Y, Monaco G, Stephens C, Sun T, Rosenblum M, Belmont J, Arlinghaus R and Lopez-Berestein G: Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts. Int J Oncol. 31:1243–1250. 2007.PubMed/NCBI | |
Yu L, Dean K and Li L: Polymer blends and composites from renewable resources. Prog Polym Sci. 31:576–602. 2006. View Article : Google Scholar | |
Hu C-MJ, Fang RH, Copp J, Luk BT and Zhang L: A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 8:336–340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu C-MJ and Zhang L, Aryal S, Cheung C, Fang RH and Zhang L: Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 108:10980–10985. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sinha M, Banik RM, Haldar C and Maiti P: Development of ciprofloxacin hydrochloride loaded poly (ethylene glycol)/chitosan scaffold as wound dressing. Nat Mater. 20:799–807. 2013. | |
Nguyen TTT, Ghosh C, Hwang S-G, Dai Tran L and Park JS: Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci Mater Med. 48:7125–7133. 2013. View Article : Google Scholar | |
Tan S, Gan C, Li R, Ye Y, Zhang S, Wu X, Yang YY, Fan W and Wu M: A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int J Nanomedicine. 10:1045–1059. 2015. View Article : Google Scholar : PubMed/NCBI | |
Janib SM, Moses AS and MacKay JA: Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 62:1052–1063. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grossman JH and McNeil SE: Nanotechnology in cancer medicine. Phys Today. 65:38–42. 2012. View Article : Google Scholar | |
Mishra S, De A and Mozumdar S: Synthesis of thermoresponsive polymers for drug delivery. Drug Delivery System Clifton: Springer; pp. 77–101. 2014, View Article : Google Scholar | |
Gundogdu N and Cetin M: Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: Preparation and in vitro evaluation. Pak J Pharm Sci. 27:1923–1929. 2014.PubMed/NCBI | |
Tajmir-Riahi HA, Nafisi Sh, Sanyakamdhorn S, Agudelo D and Chanphai P: Applications of chitosan nanoparticles in drug delivery. Methods Mol Biol. 1141:165–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malhotra M, Tomaro-Duchesneau C, Saha S and Prakash S: Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain. Methods Mol Biol. 1141:233–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raja MAG, Katas H and Wen Jing T: Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One. 10:e01289632015. View Article : Google Scholar : PubMed/NCBI | |
Malhotra M, Tomaro-Duchesneau C, Saha S and Prakash S: Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain. Drug Delivery System. Jain KK: New York, NY: Springer; pp. 233–247. 2014, View Article : Google Scholar | |
Yang X, Wu S, Wang Y, Li Y, Chang D, Luo Y, Ye S and Hou Z: Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles. Nanoscale Res Lett. 9:24082014. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Wang X, Zheng Z, Chen D, Wang X, Shi F, Yu D and Wu H: A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration. Int J Nanomedicine. 10:3567–3579. 2015.PubMed/NCBI | |
Rabanel J-M, Faivre J, Tehrani SF, Lalloz A, Hildgen P and Banquy X: Effect of the polymer architecture on the structural and biophysical properties of PEG-PLA nanoparticles. ACS Appl Mater Interfaces. 7:10374–10385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Diou O, Greco S, Beltran T, Lairez D, Authelin J-R and Bazile D: A method to quantify the affinity of cabazitaxel for PLA-PEG nanoparticles and investigate the influence of the nano-assembly structure on the drug/particle association. Pharm Res. 32:3188–3200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Asadi H, Rostamizadeh K, Salari D and Hamidi M: Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul. 28:406–416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Yi Y, Hu X, Shangguan M, Wang L, Lu Y, Qi J and Wu W: Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method. Pharm Dev Technol. 21:672–679. 2016.PubMed/NCBI | |
Xiong W, Peng L, Chen H and Li Q: Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. Int J Nanomed. 10:2985–2996. 2015. | |
Zhang R, Luo K, Yang J, Sima M, Sun Y, Janát-Amsbury MM and Kopeček J: Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J Control Release. 166:66–74. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Tang H and Wu P: Aqueous solutions of poly (ethylene oxide)-poly (N-isopropylacrylamide): Thermosensitive behavior and distinct multiple assembly processes. Langmuir. 31:6497–6506. 2015. View Article : Google Scholar : PubMed/NCBI | |
James Priya H, John R, Alex A and Anoop KR: Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B. 4:120–127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trotta F, Dianzani C, Caldera F, Mognetti B and Cavalli R: The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv. 11:931–941. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, et al: Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 526:118–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu CM, Fang RH, Luk BT and Zhang L: Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol. 8:933–938. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miele E, Spinelli GP, Miele E, Tomao F and Tomao S: Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed. 4:99–105. 2009. | |
Hawkins MJ, Soon-Shiong P and Desai N: Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 60:876–885. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y-R, Suntharalingam K, Johnstone TC, Yoo H, Lin W, Brooks JG and Lippard SJ: Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc. 136:8790–8798. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cirstea D, Hideshima T, Rodig S, Santo L, Pozzi S, Vallet S, Ikeda H, Perrone G, Gorgun G, Patel K, et al: Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 9:963–975. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Sun J, Zhang W, Sui X, Yan Z and He Z: Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Patents Anticancer Drug Discov. 4:262–272. 2009. View Article : Google Scholar | |
Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, Burris HA III, Hart LL, Low SC, Parsons DM, et al: Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 22:3157–3163. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME and Yen Y: Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA. 111:11449–11454. 2014. View Article : Google Scholar : PubMed/NCBI | |
Buhleier E, Wehner W and Vögtle F: ‘Cascade’- and ‘nonskid-chain-like’ syntheses of molecular cavity topologies. Synthesis (Mass). 155–158:19781978. | |
Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J and Smith P: A new class of polymers: Starburst-dendritic macromolecules. Polym J. 17:117–132. 1985. View Article : Google Scholar | |
Gillies ER and Fréchet JM: Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 10:35–43. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kesharwani P, Jain K and Jain NK: Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 39:268–307. 2014. View Article : Google Scholar | |
Khopade AJ, Caruso F, Tripathi P, Nagaich S and Jain NK: Effect of dendrimer on entrapment and release of bioactive from liposomes. Int J Pharm. 232:157–162. 2002. View Article : Google Scholar : PubMed/NCBI | |
Papagiannaros A, Dimas K, Papaioannou GT and Demetzos C: Doxorubicin-PAMAM dendrimer complex attached to liposomes: Cytotoxic studies against human cancer cell lines. Int J Pharm. 302:29–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Purohit G, Sakthivel T and Florence AT: Interaction of cationic partial dendrimers with charged and neutral liposomes. Int J Pharm. 214:71–76. 2001. View Article : Google Scholar : PubMed/NCBI | |
Karadag M, Geyik C, Demirkol DO, Ertas FN and Timur S: Modified gold surfaces by 6-ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Mater Sci Eng C. 33:634–640. 2013. View Article : Google Scholar | |
Tao X, Yang Y-J, Liu S, Zheng Y-Z, Fu J and Chen J-F: Poly (amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomater. 9:6431–6438. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoshioka H, Suzuki M, Mugisawa M, Naitoh N and Sawada H: Synthesis and applications of novel fluorinated dendrimer-type copolymers by the use of fluoroalkanoyl peroxide as a key intermediate. J Colloid Interface Sci. 308:4–10. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y-L, Huang Y-F, Jiang J-H, Zhang X-B, Tang C-R, Shen G-L and Yu R-Q: Functionalization of multi-walled carbon nanotubes with poly (amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem Commun. 9:185–190. 2007. View Article : Google Scholar | |
Tang L, Zhu Y, Yang X and Li C: An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Anal Chim Acta. 597:145–150. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prajapati RN, Tekade RK, Gupta U, Gajbhiye V and Jain NK: Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. Mol Pharm. 6:940–950. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK and Diwan PV: Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin. J Control Release. 90:335–343. 2003. View Article : Google Scholar : PubMed/NCBI | |
Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J and Baker JR Jr: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 19:1310–1316. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wang Y, Wang M, Xiao J and Cheng Y: Fluorinated poly (propylenimine) dendrimers as gene vectors. Biomaterials. 35:5407–5413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiao Z and Shi X: Dendrimer-based molecular imaging contrast agents. Prog Polym Sci. 44:1–27. 2015. View Article : Google Scholar | |
Malik N, Evagorou EG and Duncan R: Dendrimer-platinate: A novel approach to cancer chemotherapy. Anticancer Drugs. 10:767–776. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kaminskas LM, Kelly BD, McLeod VM, Boyd BJ, Krippner GY, Williams ED and Porter CJ: Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm. 6:1190–1204. 2009. View Article : Google Scholar : PubMed/NCBI | |
Al-Jamal KT, Al-Jamal WT, Wang JT-W, Rubio N, Buddle J, Gathercole D, Zloh M and Kostarelos K: Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano. 7:1905–1917. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Sengar RS, Nigam A, Abadjian MC, Potter DM, Grotjahn DB and Wiener EC: A fluorinated dendrimer-based nanotechnology platform: New contrast agents for high field imaging. Invest Radiol. 45:641–654. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Luo Y, Xu Y, Li J, Zhang Z, Wang H, Shen M, Shi X and Zhang G: Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl Mater Interfaces. 7:5420–5428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Wang SH, Van Antwerp ME, Chen X and Baker JR Jr: Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst (Lond). 134:1373–1379. 2009. View Article : Google Scholar | |
Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB and Baker JR Jr: Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules. 9:603–609. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hill E, Shukla R, Park SS and Baker JR Jr: Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem. 18:1756–1762. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lesniak WG, Kariapper MS, Nair BM, Tan W, Hutson A, Balogh LP and Khan MK: Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting alphavbeta3 integrins. Bioconjug Chem. 18:1148–1154. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB and Baker JR Jr: In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules. 5:2269–2274. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen H-T, Neerman MF, Parrish AR and Simanek EE: Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 126:10044–10048. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, Park JW, Jeong SH and Cho EK: A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 74:277–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park S and Healy KE: Nanoparticulate DNA packaging using terpolymers of poly (lysine-g-(lactide-b-ethylene glycol)). Bioconjug Chem. 14:311–319. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sun T-M, Du J-Z, Yan L-F, Mao H-Q and Wang J: Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 29:4348–4355. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhou Y, Zhao L, Zhang C, Li Y, Li J, Li X and Liu Y: Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 23:127–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y and Okano T: Preparation and characterization of thermally responsive block copolymer micelles comprising poly (N-isopropylacrylamide-b-DL-lactide). J Control Release. 55:87–98. 1998. View Article : Google Scholar : PubMed/NCBI | |
He C, Zhao C, Chen X, Guo Z, Zhuang X and Jing X: Novel pH- and temperature-responsive bock copolymers with tunable pH-responsive range. Macromol Rapid Commun. 29:490–497. 2008. View Article : Google Scholar | |
Xu F, Yan T-T and Luo Y-L: Studies on micellization behavior of thermosensitive PNIPAAm-b-PLA amphiphilic block copolymers. J Nanosci Nanotechnol. 12:2287–2291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Zhuang X, He C, Chen X and Jing X: Synthesis of novel thermo-and pH-responsive poly (L-lysine)-based copolymer and its micellization in water. Macromol Rapid Commun. 29:1810–1816. 2008. View Article : Google Scholar | |
Saravanakumar G, Lee J, Kim J and Kim WJ: Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy. Chem Commun (Camb). 51:9995–9998. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bae J, Maurya A, Shariat-Madar Z, Murthy SN and Jo S: Novel redox-responsive amphiphilic copolymer micelles for drug delivery: Synthesis and characterization. AAPS J. 17:1357–1368. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li C, Wang HY, Zhang XZ and Zhuo RX: Synthesis of thermo- and pH-sensitive polyion complex micelles for fluorescent imaging. Chemistry. 18:2297–2304. 2012. View Article : Google Scholar : PubMed/NCBI | |
Johnson RP, Jeong YI, John JV, Chung CW, Kang DH, Selvaraj M, Suh H and Kim I: Dual stimuli-responsive poly (N-isopropylacrylamide)-b-poly (L-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules. 14:1434–1443. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Zheng B, Zhang Y, Wu Y, Wang H and Chang J: Construction of near-infrared light-triggered reactive oxygen species-sensitive (UCN/SiO2-RB + DOX)@PPADT nanoparticles for simultaneous chemotherapy and photodynamic therapy. Nanotechnology. 27:2356012016. View Article : Google Scholar : PubMed/NCBI | |
Wu HQ and Wang CC: Biodegradable smart nanogels: A new platform for targeting drug delivery and biomedical diagnostics. Langmuir. 32:6211–6225. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moan J and Peng Q: An outline of the hundred-year history of PDT. Anticancer Res. 23A:3591–3600. 2003. | |
Castano AP, Mroz P and Hamblin MR: Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 6:535–545. 2006. View Article : Google Scholar : PubMed/NCBI | |
Krammer B: Vascular effects of photodynamic therapy. Anticancer Res. 21B:4271–4277. 2001. | |
Monge-Fuentes V, Muehlmann LA and de Azevedo RB: Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev. 5:24381–24395. 2014. View Article : Google Scholar | |
Wang C, Cheng L and Liu Z: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 3:317–330. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marin E, Briceño MI and Caballero-George C: Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed. 8:3071–3090. 2013. | |
Ma X, Wang X, Zhou M and Fei H: A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv Healthc Mater. 2:1638–1643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jung HS, Han J, Lee J-H, Lee JH, Choi JM, Kweon HS, Han JH, Kim JH, Byun KM, Jung JH, et al: Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J Am Chem Soc. 137:3017–3023. 2015. View Article : Google Scholar : PubMed/NCBI | |
Biswas S, Kumari P, Lakhani PM and Ghosh B: Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 83:184–202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dewit MA and Gillies ER: A cascade biodegradable polymer based on alternating cyclization and elimination reactions. J Am Chem Soc. 131:18327–18334. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deming TJ: Synthetic polypeptides for biomedical applications. Prog Polym Sci. 32:858–875. 2007. View Article : Google Scholar | |
Sun J, Chen X, Lu T, Liu S, Tian H, Guo Z and Jing X: Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly (L-cysteine)-block-poly (L-lactide). Langmuir. 24:10099–10106. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dourado ER, Pizzorno BS, Motta LM, Simao RA and Leite LF: Analysis of asphaltic binders modified with PPA by surface techniques. J Microsc. 254:122–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim IB, Han MH, Phillips RL, Samanta B, Rotello VM, Zhang ZJ and Bunz UH: Nano-conjugate fluorescence probe for the discrimination of phosphate and pyrophosphate. Chemistry. 15:449–456. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen PC, Mwakwari SC and Oyelere AK: Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol Sci Appl. 1:45–65. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang H-C, Barua S, Sharma G, Dey SK and Rege K: Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 155:344–357. 2011. View Article : Google Scholar : PubMed/NCBI | |
Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y and Nakagawa M: Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res. 44:1080–1093. 2011. View Article : Google Scholar : PubMed/NCBI | |
Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, Seidel GD, Yuldasheva N and Tamarkin L: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 16:6139–6149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, et al: Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 121:2768–2780. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sanchez C, Belleville P, Popall M and Nicole L: Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem Soc Rev. 40:696–753. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jain RK and Stylianopoulos T: Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 7:653–664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kamaly N, Yameen B, Wu J and Farokhzad OC: Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 116:2602–2663. 2016. View Article : Google Scholar : PubMed/NCBI | |
Holback H and Yeo Y: Intratumoral drug delivery with nanoparticulate carriers. Pharm Res. 28:1819–1830. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jain RK, Martin JD and Stylianopoulos T: The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 16:321–346. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim KY: Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine (Lond). 3:103–110. 2007. View Article : Google Scholar | |
Liu D, He C, Wang AZ and Lin W: Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomed. 8:3309–3319. 2013. | |
Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G and Szewczyk A: A two-stage poly (ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther. 11:990–995. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q and Chen C: Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 9:325–341. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Dadsetan M, Ameenuddin S, Windebank AJ, Yaszemski MJ and Lu L: In vivo biodegradation and biocompatibility of PEG/sebacic acid-based hydrogels using a cage implant system. J Biomed Mater Res A. 95:191–197. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nicolete R, dos Santos DF and Faccioli LH: The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 11:1557–1563. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA and Stahl GL: Polyglycolic acid-induced inflammation: Role of hydrolysis and resulting complement activation. Tissue Eng. 12:301–308. 2006. View Article : Google Scholar : PubMed/NCBI | |
Madaan K, Kumar S, Poonia N, Lather V and Pandita D: Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 6:139–150. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jain K, Kesharwani P, Gupta U and Jain NK: Dendrimer toxicity: Let's meet the challenge. Int J Pharm. 394:122–142. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Mou Q, Wang D, Zhu X and Yan D: Dendritic polymers for theranostics. Theranostics. 6:930–947. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dreaden EC, Austin LA, Mackey MA and El-Sayed MA: Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 3:457–478. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Zhong Y, Meng F, Cheng R, Deng C and Zhong Z: Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules. 14:2772–2780. 2013. View Article : Google Scholar : PubMed/NCBI | |
Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R and Zhang Y: In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 18:1580–1585. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X, et al: In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed Engl. 51:3125–3129. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang Z, Ding C, Chu L, Zhang Y, Terry K, Liu H, Shen Q and Zhou J: Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem. 62:498–507. 2013. View Article : Google Scholar : PubMed/NCBI | |
Langer R and Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature. 263:797–800. 1976. View Article : Google Scholar : PubMed/NCBI | |
Lee CC, MacKay JA, Fréchet JMJ and Szoka FC: Designing dendrimers for biological applications. Nat Biotechnol. 23:1517–1526. 2005. View Article : Google Scholar : PubMed/NCBI | |
Torchilin VP: Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents. Immunomethods. 4:244–258. 1994. View Article : Google Scholar : PubMed/NCBI | |
Immordino ML, Dosio F and Cattel L: Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed. 1:297–315. 2006. | |
Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, et al: Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 19:1444–1454. 2001. View Article : Google Scholar : PubMed/NCBI | |
Silverman JA and Deitcher SR: Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 71:555–564. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verma J, Lal S and Van Noorden CJ: Inorganic nanoparticles for the theranostics of cancer. Eur J Nanomed. 7:271–287. 2015. View Article : Google Scholar | |
Kim MT, Chen Y, Marhoul J and Jacobson F: Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 25:1223–1232. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R and Rochlitz C: Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. Lancet Oncol. 13:1234–1241. 2012. View Article : Google Scholar : PubMed/NCBI | |
Swiss Group for Clinical Cancer Research: Anti-EGFR-immunoliposomes loaded with doxorubicin in patients with advanced triple negative EGFR positive breast cancer. NCT02833766. https://clinicaltrials.gov/ct2/show/NCT02833766Accessed. October 20–2016. | |
Markman M: Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother. 7:1469–1474. 2006. View Article : Google Scholar : PubMed/NCBI | |
Listed N: Kaposi's sarcoma: DaunoXome approved. AIDS Treat News. 79:3–4. 1996. | |
Rau K-M, Lin Y-C, Chen Y-Y, Chen JS, Lee KD, Wang CH and Chang HK: Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: An open-label, multi-center, non-comparative phase II study. BMC Cancer. 15:4232015. View Article : Google Scholar : PubMed/NCBI | |
DiGiulio S: DiGiulio, S. FDA approves onivyde combo regimen for advanced pancreatic cancer. Oncol Times. 37:82015. View Article : Google Scholar | |
Stathopoulos G and Boulikas T: Lipoplatin formulation review article. J Drug Deliv. 2012:5813632012. View Article : Google Scholar : PubMed/NCBI | |
Ohyanagi F, Horai T, Sekine I, Yamamoto N, Nakagawa K, Nishio M, Senger S, Morsli N and Tamura T: Safety of BLP25 liposome vaccine (L-BLP25) in Japanese patients with unresectable stage III NSCLC after primary chemoradiotherapy: Preliminary results from a Phase I/II study. Jpn J Clin Oncol. 41:718–722. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dou Y, Hynynen K and Allen C: To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J Control Release. 249:63–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, et al: Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AM. J Clin Oncol. 34:70002016. | |
Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D and Hoos A: A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol. 58:759–764. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, Rojanarata T, Sila-on W, Ruktanonchai U and Opanasopit P: Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech. 13:150–158. 2012. View Article : Google Scholar : PubMed/NCBI | |
Strumberg D, Schultheis B, Traugott U, Vank C, Santel A, Keil O, Giese K, Kaufmann J and Drevs J: Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther. 50:76–78. 2012. View Article : Google Scholar : PubMed/NCBI | |
Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C and Piccart M: CT4002 study group: A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol. 25:824–831. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slingerland M, Guchelaar H-J, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH and Gelderblom H: Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clin Ther. 35:1946–1954. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bala V, Rao S, Boyd BJ and Prestidge CA: Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 172:48–61. 2013. View Article : Google Scholar : PubMed/NCBI | |
Senzer NN, Matsuno K, Yamagata N, Fujisawa T, Wasserman E, Sutherland W, Sharma S and Phan A: Abstract C36: MBP-426, a novel liposome-encapsulated oxaliplatin, in combination with 5-FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro-esophageal adenocarcinoma, with pharmacokinetics. Mol Cancer Ther. 8:(Suppl. 1). C36. 2009.doi: 10.1158/1535-7163.TARG-09-C36. View Article : Google Scholar | |
Seiden MV, Muggia F, Astrow A, Matulonis U, Campos S, Roche M, Sivret J, Rusk J and Barrett E: A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol. 93:229–232. 2004. View Article : Google Scholar : PubMed/NCBI | |
Noble GT, Stefanick JF, Ashley JD, Kiziltepe T and Bilgicer B: Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 32:32–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wetzler M, Thomas DA, Wang ES, Shepard R, Ford LA, Heffner TL, Parekh S, Andreeff M, O'Brien S and Kantarjian HM: Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 13:430–434. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hwang JH, Lim MC, Seo S-S, Park S-Y and Kang S: Phase II study of belotecan (CKD 602) as a single agent in patients with recurrent or progressive carcinoma of uterine cervix. Jpn J Clin Oncol. 41:624–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hough B, Posner M, Chung C, et al: A phase II study of single agent OSI-7904L in patients with metastatic or recurrent squamous cell carcinoma of the head and neck (SCCHN). Journal. 27:e170052009. | |
Pattni BS, Chupin VV and Torchilin VP: New developments in liposomal drug delivery. Chem Rev. 115:10938–10966. 2015. View Article : Google Scholar : PubMed/NCBI | |
Semple SC, Leone R, Wang J, Leng EC, Klimuk SK, Eisenhardt ML, Yuan ZN, Edwards K, Maurer N, Hope MJ, et al: Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci. 94:1024–1038. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ugwu S, Zhang A, Parmar M, Miller B, Sardone T, Peikov V and Ahmad I: Preparation, characterization, and stability of liposome-based formulations of mitoxantrone. Drug Dev Ind Pharm. 31:223–229. 2005. View Article : Google Scholar : PubMed/NCBI | |
McMurtry V, Nieves-Alicea R, Donato N and Tari A: Liposome-incorporated Grb2 antisense oligonucleotides as a novel therapy against drug resistant chronic myelogenous leukemia. Cancer Res. 68:1503. 2008. | |
Stathopoulos GP, Boulikas T, Kourvetaris A and Stathopoulos J: Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res. 262B:1489–1493. 2006. | |
Oncology Venture: Oncology Venture presents LiPlaCis on AACR in New Orleans. https://www.aktietorget.se/NewsItem.aspx?ID=77244 | |
Barraud L, Merle P, Soma E, Lefrançois L, Guerret S, Chevallier M, Dubernet C, Couvreur P, Trépo C and Vitvitski L: Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 42:736–743. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Sun X, Zeng L, Liu J and Zhang Z: A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine (Lond). 5:419–423. 2009. View Article : Google Scholar | |
Pang X, Du H-L, Zhang H-Q, Zhai Y-J and Zhai G-X: Polymer-drug conjugates: Present state of play and future perspectives. Drug Discov Today. 18:1316–1322. 2013. View Article : Google Scholar : PubMed/NCBI | |
QUILT-3.014: A Trial of ABI-011 administered weekly in patients with advanced solid tumors or lymphomas. NCT02582827. https://clinicaltrials.gov/ct2/show/NCT02582827Accessed. March 6–2017. | |
Giglio V, Sgarlata C and Vecchio G: Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: A spectroscopic and nanocalorimetric investigation. RSC Advances. 5:16664–16671. 2015. View Article : Google Scholar | |
Svenson S: Clinical translation of nanomedicines. Curr Opin Solid State Mater Sci. 16:287–294. 2012. View Article : Google Scholar | |
Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin DS, Schulz TK, Reed GA, Roby KF, Mackay CB, Smith HJ, et al: A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 75:1075–1087. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vergote I, Brize A, Lisyanskaya AS and Lichinitser M: Randomized phase III study comparing paclical-carboplatin with paclitaxel-carboplatin in patients with recurrent platinum-sensitive epithelial ovarian cancer. J Clin Oncol. 33:55172015. | |
Pitto-Barry A and Barry NP: Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym Chem. 5:3291–3297. 2014. View Article : Google Scholar | |
Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, et al: Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs. 30:1621–1627. 2012. View Article : Google Scholar : PubMed/NCBI | |
Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y and Yoshizaki T: Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci. 104:369–374. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsuji A, Hamaguchi T, Yamaguchi K, et al: A phase II study of NK012, a polymeric micelle formulation of SN-38, in colorectal cancer patients who had received prior oxaliplatin-based regimen. Journal. 33:35272015. | |
Ghamande S, Lin C-C, Cho DC, Coleman T, Chaudhary I, Shapiro GI, Silverman M, Kuo M-W, Mach WB, Tseng Y, et al: Abstract A89: A phase I study of the novel DNA topoisomerase-1 inhibitor, TLC388 (Lipotecan®), administered intravenously to patients with advanced solid tumors. Mol Cancer Ther. 10:(Supplement 1). 892011. View Article : Google Scholar | |
Ueno T, Endo K, Hori K, Ozaki N, Tsuji A, Kondo S, Wakisaka N, Murono S, Kataoka K, Kato Y, et al: Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). Int J Nanomed. 9:3005–3012. 2014. View Article : Google Scholar | |
Takahashi A, Yamamoto Y, Yasunaga M, Koga Y, Kuroda J, Takigahira M, Harada M, Saito H, Hayashi T, Kato Y, et al: NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 104:920–925. 2013. View Article : Google Scholar : PubMed/NCBI | |
Owen SC, Chan DP and Shoichet MS: Polymeric micelle stability. Nano Today. 7:53–65. 2012. View Article : Google Scholar |