Anticancer potential of bioactive peptides from animal sources (Review)
- Authors:
- Linghong Wang
- Chao Dong
- Xian Li
- Wenyan Han
- Xiulan Su
-
Affiliations: Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China, College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China - Published online on: July 3, 2017 https://doi.org/10.3892/or.2017.5778
- Pages: 637-651
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
McGuire S: World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 7:418–419. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R and Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2:751–760. 2007. View Article : Google Scholar : PubMed/NCBI | |
Amit D and Hochberg A: Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med. 8:1342010. View Article : Google Scholar : PubMed/NCBI | |
Kang TH, Mao CP, He L, Tsai YC, Liu K, La V, Wu TC and Hung CF: Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects. PLoS One. 7:e351412012. View Article : Google Scholar : PubMed/NCBI | |
Blaurock N, Schmerler D, Hünniger K, Kurzai O, Ludewig K, Baier M, Brunkhorst FM, Imhof D and Kiehntopf M: C-terminal alpha-1 antitrypsin peptide: A new sepsis biomarker with immunomodulatory function. Mediators Inflamm. 2016:61294372016. View Article : Google Scholar : PubMed/NCBI | |
Porta A, Petrone AM, Morello S, Granata I, Rizzo F, Memoli D, Weisz A and Maresca B: Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell Microbiol. 19:e126452017.doi: 10.1111/cmi.12645. View Article : Google Scholar | |
Dabarera MC, Athiththan LV and Perera RP: Antihypertensive peptides from curd. Ayu. 36:214–219. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shiratsuchi E, Ura M, Nakaba M, Maeda I and Okamoto K: Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci. 16:652–658. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Zhou J, Zhang W, Yang X, Wang J, Wei C, Gu F and Lei T: Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem. Jun 26–2016.(Epub ahead of print). | |
Kongcharoen A, Poolex W, Wichai T and Boonsombat R: Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol Lett. 38:1195–1201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iwaniak A, Darewicz M, Minkiewicz P, Protasiewicz M and Borawska J: (Biologically active peptides derived from food proteins as the food components with cardioprotective properties). Pol Merkur Lekarski. 36:403–406. 2014.(In Polish). PubMed/NCBI | |
Jang A, Jo C, Kang K-S and Lee M: Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chem. 107:327–336. 2008. View Article : Google Scholar | |
Su L, Xu G, Shen J, Tuo Y, Zhang X, Jia S, Chen Z and Su X: Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncol Rep. 23:3–9. 2010.PubMed/NCBI | |
Yu L, Yang L, An W and Su X: Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem. 115:697–711. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su X, Dong C, Zhang J, Su L, Wang X, Cui H and Chen Z: Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci. 4:72014. View Article : Google Scholar : PubMed/NCBI | |
Su LY, Shi YX, Yan MR, Xi Y and Su XL: Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol Sin. 36:1514–1519. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park YW and Nam MS: Bioactive peptides in milk and dairy products: A review. Korean J Food Sci Anim Resour. 35:831–840. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roy MK, Watanabe Y and Tamai Y: Induction of apoptosis in HL-60 cells by skimmed milk digested with a proteolytic enzyme from the yeast Saccharomyces cerevisiae. J Biosci Bioeng. 88:426–432. 1999. View Article : Google Scholar : PubMed/NCBI | |
Meisel H and FitzGerald RJ: Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr Pharm Des. 9:1289–1295. 2003. View Article : Google Scholar : PubMed/NCBI | |
MacDonald RS, Thornton WH Jr and Marshall RT: A cell culture model to identify biologically active peptides generated by bacterial hydrolysis of casein. J Dairy Sci. 77:1167–1175. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ganjam LS, Thornton WH Jr, Marshall RT and MacDonald RS: Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. J Dairy Sci. 80:2325–2329. 1997. View Article : Google Scholar : PubMed/NCBI | |
Legrand D, Pierce A, Elass E, Carpentier M, Mariller C and Mazurier J: Lactoferrin structure and functions. Adv Exp Med Biol. 606:163–194. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Gómez S, Ferrer-Espada R, Stewart PS, Pitts B, Lohner K and de Martínez Tejada G: Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 15:1372015. View Article : Google Scholar : PubMed/NCBI | |
Yin C, Wong JH and Ng TB: Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin. Curr Mol Med. 14:1139–1154. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mader JS, Salsman J, Conrad DM and Hoskin DW: Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther. 4:612–624. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Løkke C, Ponthan F, Johnsen JI, Sveinbjørnsson B, Kogner P, et al: The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 119:493–500. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yin CM, Wong JH, Xia J and Ng TB: Studies on anticancer activities of lactoferrin and lactoferricin. Curr Protein Pept Sci. 14:492–503. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harnedy PA and FitzGerald RJ: Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods. 4:6–24. 2012. View Article : Google Scholar | |
Zhou QJ, Wang J, Liu M, Qiao Y, Hong WS, Su YQ, Han KH, Ke QZ and Zheng WQ: Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol. 55:195–202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shaala LA, Youssef DT, Ibrahim SR and Mohamed GA: Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res. Mar 7–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Suarez-Jimenez GM, Burgos-Hernandez A and Ezquerra-Brauer JM: Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar Drugs. 10:963–986. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR and Ahmed H: Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci USA. 110:5052–5057. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jumeri and Kim SM: Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci Biotechnol. 20:10752011. View Article : Google Scholar | |
Kurt O, Ozdal-Kurt F, Tuğlu MI and Akçora CM: The cytotoxic, neurotoxic, apoptotic and antiproliferative activities of extracts of some marine algae on the MCF-7 cell line. Biotech Histochem. 89:568–576. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsu K-C, Li-Chan ECY and Jao C-L: Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem. 126:617–622. 2011. View Article : Google Scholar | |
Lee YG, Kim JY, Lee KW, Kim KH and Lee HJ: Peptides from anchovy sauce induce apoptosis in a human lymphoma cell (U937) through the increase of caspase-3 and −8 activities. Ann NY Acad Sci. 1010:399–404. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee YG, Lee KW, Kim JY, Kim KH and Lee HJ: Induction of apoptosis in a human lymphoma cell line by hydrophobic peptide fraction separated from anchovy sauce. Biofactors. 21:63–67. 2004. View Article : Google Scholar : PubMed/NCBI | |
Picot L, Bordenave S, Didelot S, Fruitier-Arnaudin I, Sannier F, Thorkelsson G, Bergé JP, Guérard F, Chabeaud A and Piot JM: Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochem. 41:1217–1222. 2006. View Article : Google Scholar | |
Chen JY, Lin WJ and Lin TL: A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides. 30:1636–1642. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang WT, Pan CY, Rajanbabu V, Cheng CW and Chen JY: Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides. 32:342–352. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen JY, Lin WJ, Wu JL, Her GM and Hui CF: Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides. 30:2365–2373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hsu JC, Lin LC, Tzen JT and Chen JY: Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides. 32:900–910. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu SP, Huang TC, Lin CC, Hui CF, Lin CH and Chen JY: Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs. 10:1852–1872. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wilson-Sanchez G, Moreno-Félix C, Velazquez C, Plascencia-Jatomea M, Acosta A, Machi-Lara L, Aldana-Madrid ML, Ezquerra-Brauer JM, Robles-Zepeda R and Burgos-Hernandez A: Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vannamei). Mar Drugs. 8:2795–2809. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin MC, Lin SB, Chen JC, Hui CF and Chen JY: Shrimp anti-lipopolysaccharide factor peptide enhances the antitumor activity of cisplatin in vitro and inhibits HeLa cells growth in nude mice. Peptides. 31:1019–1025. 2010. View Article : Google Scholar : PubMed/NCBI | |
Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, Gueguen Y, Boze H, Moulin G and Bachère E: Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol. 29:841–851. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kannan A, Hettiarachchy NS, Marshall M, Raghavan S and Kristinsson H: Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. J Sci Food Agric. 91:1920–1924. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aneiros A and Garateix A: Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci. 803:41–53. 2004. View Article : Google Scholar : PubMed/NCBI | |
Baker MA, Grubb DR and Lawen A: Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells. Apoptosis. 7:407–412. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ahuja D, Vera MD, SirDeshpande BV, Morimoto H, Williams PG, Joullié MM and Toogood PL: Inhibition of protein synthesis by didemnin B: How EF-1alpha mediates inhibition of translocation. Biochemistry. 39:4339–4346. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vera MD and Joullié MM: Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev. 22:102–145. 2002. View Article : Google Scholar : PubMed/NCBI | |
Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, Broggini M, D'Incalci M, Ribatti D and Giavazzi R: Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 90:2418–2424. 2004.PubMed/NCBI | |
Andavan GS and Lemmens-Gruber R: Cyclodepsipeptides from marine sponges: Natural agents for drug research. Mar Drugs. 8:810–834. 2010. View Article : Google Scholar : PubMed/NCBI | |
Faivre S, Chièze S, Delbaldo C, Ady-Vago N, Guzman C, Lopez-Lazaro L, Lozahic S, Jimeno J, Pico F, Armand JP, et al: Phase I and pharmacokinetic study of aplidine, a new marine cyclodepsipeptide in patients with advanced malignancies. J Clin Oncol. 23:7871–7880. 2005. View Article : Google Scholar : PubMed/NCBI | |
Geldof AA, Mastbergen SC, Henrar RE and Faircloth GT: Cytotoxicity and neurocytotoxicity of new marine anticancer agents evaluated using in vitro assays. Cancer Chemother Pharmacol. 44:312–318. 1999. View Article : Google Scholar : PubMed/NCBI | |
Albella B, Faircloth G, López-Lázaro L, Guzmán C, Jimeno J and Bueren JA: In vitro toxicity of ET-743 and aplidine, two marine-derived antineoplastics, on human bone marrow haematopoietic progenitors. comparison with the clinical results. Eur J Cancer. 38:1395–1404. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hamada Y and Shioiri T: Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev. 105:4441–4482. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vervoort H, Fenical W and Epifanio RA: Tamandarins A and B: New cytotoxic depsipeptides from a Brazilian ascidian of the family Didemnidae. J Org Chem. 65:782–792. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Wang C, Liu H, Wang F, Zheng L, Zhao J, Chu E and Lin X: A novel polypeptide extracted from Ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells. Clin Colorectal Cancer. 11:207–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Liu M, Wei J, Huang H, Zhang Y, Zhao J, Xiao L, Wu N, Zheng L and Lin X: CS5931, a novel polypeptide in Ciona savignyi, represses angiogenesis via inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Mar Drugs. 12:1530–1544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT and Prinsep MR: Marine natural products. Nat Prod Rep. 26:170–244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim SR, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, Wray V, Edrada-Ebel R and Proksch P: Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem. 18:4947–4956. 2010. View Article : Google Scholar : PubMed/NCBI | |
Coello L, Reyes F, Martín MJ, Cuevas C and Fernández R: Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa. J Nat Prod. 77:298–303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhan KX, Jiao WH, Yang F, Li J, Wang SP, Li YS, Han BN and Lin HW: Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J Nat Prod. 77:2678–2684. 2014. View Article : Google Scholar : PubMed/NCBI | |
Williams DE, Yu K, Behrisch HW, Van Soest R and Andersen RJ: Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J Nat Prod. 72:1253–1257. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakazawa H, Kitano K, Cioca D, Ishikawa M, Ueno M, Ishida F and Kiyosawa K: Induction of polyploidization by jaspamide in HL-60 cells. Acta Haematol. 104:65–71. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cioca DP and Kitano K: Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell Mol Life Sci. 59:1377–1387. 2002. View Article : Google Scholar : PubMed/NCBI | |
Odaka C, Sanders ML and Crews P: Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol. 7:947–952. 2000.PubMed/NCBI | |
Ebada SS, Wray V, de Voogd NJ, Deng Z, Lin W and Proksch P: Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar Drugs. 7:434–444. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zampella A, Sepe V, Bellotta F, Luciano P, D'Auria MV, Cresteil T, Debitus C, Petek S, Poupat C and Ahond A: Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org Biomol Chem. 7:4037–4044. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pelay-Gimeno M, García-Ramos Y, Martin Jesús M, Spengler J, Molina-Guijarro JM, Munt S, Francesch AM, Cuevas C, Tulla-Puche J and Albericio F: The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat Commun. 4:23522013. View Article : Google Scholar : PubMed/NCBI | |
Freitas VM, Rangel M, Bisson LF, Jaeger RG and Machado-Santelli GM: The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment. J Cell Physiol. 216:583–594. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan KC, Wakimoto T and Abe I: Lipodiscamides A-C, new cytotoxic lipopeptides from Discodermia kiiensis. Org Lett. 16:3256–3259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N and Kashman Y: Taumycins A and B, two bioactive lipodepsipeptides from the Madagascar sponge Fascaplysinopsis sp. Org Lett. 10:4307–4309. 2008. View Article : Google Scholar : PubMed/NCBI | |
Teta R, Irollo E, Della Sala G, Pirozzi G, Mangoni A and Costantino V: Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar Drugs. 11:4451–4463. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL and Zhang YZ: Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar Drugs. 8:255–268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cheong SH, Kim EK, Hwang JW, Kim YS, Lee JS, Moon SH, Jeon BT and Park PJ: Purification of a novel peptide derived from a shellfish, Crassostrea gigas, and evaluation of its anticancer property. J Agric Food Chem. 61:11442–11446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim EK, Joung HJ, Kim YS, Hwang JW, Ahn CB, Jeon YJ, Moon SH and Park PJ: Purification of a novel anticancer peptide from enzymatic hydrolysate of Mytilus coruscus. J Microbiol Biotechnol. 22:1381–1387. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harris JR and Markl J: Keyhole limpet hemocyanin: Molecular structure of a potent marine immunoactivator. A review. Eur Urol. 37:(Suppl 3). 24–33. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tzianabos AO: Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin Microbiol Rev. 13:523–533. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lamm DL, Dehaven JI and Riggs DR: Keyhole limpet hemocyanin immunotherapy of bladder cancer: Laboratory and clinical studies. Eur Urol. 37:(Suppl 3). 41–44. 2000. View Article : Google Scholar : PubMed/NCBI | |
Murai A, Kitahara K, Okumura S, Kobayashi M and Horio F: Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim Sci J. 87:257–265. 2016. View Article : Google Scholar : PubMed/NCBI | |
Riggs DR, Jackson B, Vona-Davis L and McFadden D: In vitro anticancer effects of a novel immunostimulant: Keyhole limpet hemocyanin. J Surg Res. 108:279–284. 2002. View Article : Google Scholar : PubMed/NCBI | |
McFadden DW, Riggs DR, Jackson BJ and Vona-Davis L: Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett's esophageal adenocarcinoma. Am J Surg. 186:552–555. 2003. View Article : Google Scholar : PubMed/NCBI | |
Riggs DR, Jackson BJ, Vona-Davis L, Nigam A and McFadden DW: In vitro effects of keyhole limpet hemocyanin in breast and pancreatic cancer in regards to cell growth, cytokine production, and apoptosis. Am J Surg. 189:680–684. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pettit GR, Srirangam JK, Barkoczy J, Williams MD, Durkin KP, Boyd MR, Bai R, Hamel E, Schmidt JM and Chapuis JC: Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des. 10:529–544. 1995.PubMed/NCBI | |
Pettit GR, Flahive EJ, Boyd MR, Bai R, Hamel E, Pettit RK and Schmidt JM: Antineoplastic agents 360. Synthesis and cancer cell growth inhibitory studies of dolastatin 15 structural modifications. Anticancer Drug Des. 13:47–66. 1998.PubMed/NCBI | |
Maderna A, Doroski M, Subramanyam C, Porte A, Leverett CA, Vetelino BC, Chen Z, Risley H, Parris K, Pandit J, et al: Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications. J Med Chem. 57:10527–10543. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gajula PK, Asthana J, Panda D and Chakraborty TK: A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death. J Med Chem. 56:2235–2245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pettit GR, Hogan F and Toms S: Antineoplastic agents. 592. Highly effective cancer cell growth inhibitory structural modifications of dolastatin 10. J Nat Prod. 74:962–968. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suenaga K, Kajiwara S, Kuribayashi S, Handa T and Kigoshi H: Synthesis and cytotoxicity of aurilide analogs. Bioorg Med Chem Lett. 18:3902–3905. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sato S, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H and Uesugi M: Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol. 18:131–139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Semenzato M, Cogliati S and Scorrano L: Prohibitin(g) cancer: Aurilide and killing by Opa1-dependent cristae remodeling. Chem Biol. 18:8–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shilabin AG and Hamann MT: In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg Med Chem. 19:6628–6632. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cruz LJ, Luque-Ortega JR, Rivas L and Albericio F: Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents. Mol Pharm. 6:813–824. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hosta L, Pla-Roca M, Arbiol J, López-Iglesias C, Samitier J, Cruz LJ, Kogan MJ and Albericio F: Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjug Chem. 20:138–146. 2009. View Article : Google Scholar : PubMed/NCBI | |
García-Rocha M, Bonay P and Avila J: The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Lett. 99:43–50. 1996. View Article : Google Scholar : PubMed/NCBI | |
Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FA and Giaccone G: Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol Pharmacol. 68:502–510. 2005.PubMed/NCBI | |
Wesson KJ and Hamann MT: Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J Nat Prod. 59:629–631. 1996. View Article : Google Scholar : PubMed/NCBI | |
Conlon JM, Mechkarska M, Lukic ML and Flatt PR: Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides. 57:67–77. 2014. View Article : Google Scholar : PubMed/NCBI | |
Angeletti LR, Agrimi U, Curia C, French D and Mariani-Costantini R: Healing rituals and sacred serpents. Lancet. 340:223–225. 1992. View Article : Google Scholar : PubMed/NCBI | |
Oelkrug C, Hartke M and Schubert A: Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Res. 35:635–643. 2015.PubMed/NCBI | |
Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H and Woodhams DC: The alyteserins: Two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides. 30:1069–1073. 2009. View Article : Google Scholar : PubMed/NCBI | |
Conlon JM, Mechkarska M, Prajeep M, Arafat K, Zaric M, Lukic ML and Attoub S: Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids. 44:715–723. 2013. View Article : Google Scholar : PubMed/NCBI | |
Conlon JM, Galadari S, Raza H and Condamine E: Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des. 72:58–64. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, Wallace JC and Tyler MJ: The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur J Biochem. 267:5330–5341. 2000. View Article : Google Scholar : PubMed/NCBI | |
van Zoggel H, Hamma-Kourbali Y, Galanth C, Ladram A, Nicolas P, Courty J, Amiche M and Delbé J: Antitumor and angiostatic peptides from frog skin secretions. Amino Acids. 42:385–395. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi D, Hou X, Wang L, Gao Y, Wu D, Xi X, Zhou M, Kwok HF, Duan J, Chen T, et al: Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of Pachymedusa dacnicolor. Toxins (Basel). 8:82016. View Article : Google Scholar | |
Conlon JM, Woodhams DC, Raza H, Coquet L, Leprince J, Jouenne T, Vaudry H and Rollins-Smith LA: Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon. 50:498–506. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wan Y, Ma C, Zhou M, Xi X, Li L, Wu D, Wang L, Lin C, Lopez JC, Chen T, et al: Phylloseptin-PBa - A novel broad-spectrum antimicrobial peptide from the skin secretion of the peruvian purple-sided leaf frog (Phyllomedusa baltea) which exhibits cancer cell cytotoxicity. Toxins (Basel). 7:5182–5193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ohsaki Y, Gazdar AF, Chen HC and Johnson BE: Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 52:3534–3538. 1992.PubMed/NCBI | |
Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, Harder J, Unteregger G and Stöckle M: Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol. 50:141–147. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baker MA, Maloy WL, Zasloff M and Jacob LS: Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res. 53:3052–3057. 1993.PubMed/NCBI | |
Koszałka P, Kamysz E, Wejda M, Kamysz W and Bigda J: Antitumor activity of antimicrobial peptides against U937 histiocytic cell line. Acta Biochim Pol. 58:111–117. 2011.PubMed/NCBI | |
Miyazaki Y, Aoki M, Yano Y and Matsuzaki K: Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry. 51:10229–10235. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li S, Hao L, Bao W, Zhang P, Su D, Cheng Y, Nie L, Wang G, Hou F and Yang Y: A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell. Arch Microbiol. 198:473–482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Libério MS, Joanitti GA, Azevedo RB, Cilli EM, Zanotta LC, Nascimento AC, Sousa MV, Pires Júnior OR, Fontes W and Castro MS: Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids. 40:51–59. 2011. View Article : Google Scholar : PubMed/NCBI | |
Attoub S, Arafat H, Mechkarska M and Conlon JM: Anti-tumor activities of the host-defense peptide hymenochirin-1B. Regul Pept. 187:51–56. 2013. View Article : Google Scholar : PubMed/NCBI | |
Attoub S, Mechkarska M, Sonnevend A, Radosavljevic G, Jovanovic I, Lukic ML and Conlon JM: Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides. 39:95–102. 2013. View Article : Google Scholar : PubMed/NCBI | |
Merchant ME, Roche C, Elsey RM and Prudhomme J: Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol. 136:505–513. 2003. View Article : Google Scholar : PubMed/NCBI | |
Merchant ME, Pallansch M, Paulman RL, Wells JB, Nalca A and Ptak R: Antiviral activity of serum from the American alligator (Alligator mississippiensis). Antiviral Res. 66:35–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Merchant ME, Leger N, Jerkins E, Mills K, Pallansch MB, Paulman RL and Ptak RG: Broad spectrum antimicrobial activity of leukocyte extracts from the American alligator (Alligator mississippiensis). Vet Immunol Immunopathol. 110:221–228. 2006. View Article : Google Scholar : PubMed/NCBI | |
Merchant ME, Roche CM, Thibodeaux D and Elsey RM: Identification of alternative pathway serum complement activity in the blood of the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol. 141:281–288. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T and Thammasirirak S: Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev Comp Immunol. 35:545–553. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A and Thammasirirak S: Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. J Antibiot (Tokyo). 67:205–212. 2014. View Article : Google Scholar : PubMed/NCBI | |
Patathananone S, Thammasirirak S, Daduang J, Chung JG, Temsiripong Y and Daduang S: Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. Environ Toxicol. 31:986–997. 2016. View Article : Google Scholar : PubMed/NCBI | |
Theansungnoen T, Maijaroen S, Jangpromma N, Yaraksa N, Daduang S, Temsiripong T, Daduang J and Klaynongsruang S: Cationic antimicrobial peptides derived from Crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J. 35:202–211. 2016. View Article : Google Scholar : PubMed/NCBI | |
He S, Mao X, Zhang T, Guo X, Ge Y, Ma C and Zhang X: Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J Microencapsul. 33:344–354. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chippaux JP and Goyffon M: Epidemiology of scorpionism: A global appraisal. Acta Trop. 107:71–79. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goudet C, Chi CW and Tytgat J: An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon. 40:1239–1258. 2002. View Article : Google Scholar : PubMed/NCBI | |
Srinivasan KN, Gopalakrishnakone P, Tan PT, Chew KC, Cheng B, Kini RM, Koh JL, Seah SH and Brusic V: SCORPION, a molecular database of scorpion toxins. Toxicon. 40:23–31. 2002. View Article : Google Scholar : PubMed/NCBI | |
DeBin JA, Maggio JE and Strichartz GR: Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 264:C361–C369. 1993.PubMed/NCBI | |
Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E and De Waard M: Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel). 7:1079–1101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mamelak AN and Jacoby DB: Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv. 4:175–186. 2007. View Article : Google Scholar : PubMed/NCBI | |
Veiseh O, Gunn JW, Kievit FM, Sun C, Fang C, Lee JS and Zhang M: Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small. 5:256–264. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deshane J, Garner CC and Sontheimer H: Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem. 278:4135–4144. 2003. View Article : Google Scholar : PubMed/NCBI | |
Soroceanu L, Manning TJ Jr and Sontheimer H: Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci. 19:5942–5954. 1999.PubMed/NCBI | |
Sontheimer H: An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 233:779–791. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lui VC, Lung SS, Pu JK, Hung KN and Leung GK: Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res. 30:4515–4524. 2010.PubMed/NCBI | |
Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, Chen T and Shaw C: Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie. 95:1784–1794. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ali SA, Alam M, Abbasi A, Undheim EA, Fry BG, Kalbacher H and Voelter W: Structure-activity relationship of chlorotoxin-like peptides. Toxins (Basel). 8:362016. View Article : Google Scholar : PubMed/NCBI | |
Kuhn-Nentwig L: Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 60:2651–2668. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vorontsova OV, Egorova NS, Arseniev AS and Feofanov AV: Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie. 93:227–241. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Deng M, Xiang J, Ma H, Hu W, Zhao Y, Li DW and Liang S: A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr Mol Med. 12:1350–1360. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moreno M and Giralt E: Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel). 7:1126–1150. 2015. View Article : Google Scholar : PubMed/NCBI | |
Havas LJ: Effect of bee venom on colchicine-induced tumours. Nature. 166:567–568. 1950. View Article : Google Scholar : PubMed/NCBI | |
Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ and Hong JT: Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol. 258:72–81. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, Cao X and Ling C: Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J Biol Chem. 284:3804–3813. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park MH, Choi MS, Kwak DH, Oh KW, Yoon DY, Han SB, Song HS, Song MJ and Hong JT: Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate. 71:801–812. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, et al: Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells. 29:209–215. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gajski G and Garaj-Vrhovac V: Melittin: A lytic peptide with anticancer properties. Environ Toxicol Pharmacol. 36:697–705. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Soman NR, Schlesinger PH, Lanza GM and Wickline SA: Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 3:318–327. 2011. View Article : Google Scholar : PubMed/NCBI | |
Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA and Schlesinger PH: Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest. 119:2830–2842. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H and Harashima H: Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm. 303:1–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N, Auada AV, Farias CF, Pasqualoto KF, Rodrigues CP, et al: Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides. 68:113–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vyas VK, Brahmbhatt K, Bhatt H and Parmar U: Therapeutic potential of snake venom in cancer therapy: Current perspectives. Asian Pac J Trop Biomed. 3:156–162. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kerkis I, Hayashi MA, da Prieto Silva AR, Pereira A, De Sá, Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A and Yamane T: State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014:6759852014. View Article : Google Scholar : PubMed/NCBI | |
Pereira A, Kerkis A, Hayashi MA, Pereira AS, Silva FS, Oliveira EB, da Prieto Silva AR, Yamane T, Rádis-Baptista G and Kerkis I: Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin Investig Drugs. 20:1189–1200. 2011. View Article : Google Scholar : PubMed/NCBI | |
León G, Sánchez L, Hernández A, Villalta M, Herrera M, Segura A, Estrada R and Gutiérrez JM: Immune response towards snake venoms. Inflamm Allergy Drug Targets. 10:381–398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, Dou J and Zhou C: BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol. 707:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, Kohlhoff M, Gontijo CM, Navdaev A, de Rezende FF, et al: Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta. 1810:683–694. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harris F, Dennison SR, Singh J and Phoenix DA: On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev. 33:190–234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lohner K and Hilpert K: Antimicrobial peptides: Cell membrane and microbial surface interactions. Biochim Biophys Acta. 1858:915–917. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bailly C: Anticancer properties of lamellarins. Mar Drugs. 13:1105–1123. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riedl S, Leber R, Rinner B, Schaider H, Lohner K and Zweytick D: Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. Biochim Biophys Acta. 1848:2918–2931. 2015. View Article : Google Scholar : PubMed/NCBI | |
Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, Lohner K and Zweytick D: In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta. 1808:2638–2645. 2011. View Article : Google Scholar : PubMed/NCBI | |
Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z, Degani H and Shai Y: Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res. 66:5371–5378. 2006. View Article : Google Scholar : PubMed/NCBI | |
Won A, Ruscito A and Ianoul A: Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Biochim Biophys Acta. 1818:3072–3080. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rashid R, Veleba M and Kline KA: Focal targeting of the bacterial envelope by antimicrobial peptides. Front Cell Dev Biol. 4:552016. View Article : Google Scholar : PubMed/NCBI | |
Sorochkina AI, Kovalchuk SI, Omarova EO, Sobko AA, Kotova EA and Antonenko YN: Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes. Biochim Biophys Acta. 1828:2428–2435. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ryan L, Lamarre B, Diu T, Ravi J, Judge PJ, Temple A, Carr M, Cerasoli E, Su B, Jenkinson HF, et al: Anti-antimicrobial peptides: Folding-mediated host defense antagonists. J Biol Chem. 288:20162–20172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Cui Z, Li YH, Hsu WH and Lee BH: In vitro and in vivo anticancer activity of pardaxin against proliferation and growth of oral squamous cell carcinoma. Mar Drugs. 14:22015. View Article : Google Scholar : PubMed/NCBI | |
Pino-Angeles A, Leveritt JM III and Lazaridis T: Pore structure and synergy in antimicrobial peptides of the magainin family. PLOS Comput Biol. 12:e10045702016. View Article : Google Scholar : PubMed/NCBI | |
Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX and Ji SP: Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. 6:273942016. View Article : Google Scholar : PubMed/NCBI | |
Kashiwada A, Mizuno M and Hashimoto J: pH-Dependent membrane lysis by using melittin-inspired designed peptides. Org Biomol Chem. 14:6281–6288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ros U and García-Sáez AJ: More Than a Pore: The interplay of pore-forming proteins and lipid membranes. J Membr Biol. 248:545–561. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bolintineanu DS, Vivcharuk V and Kaznessis YN: Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci. 13:11000–11011. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lohner K: Novel antibiotics based upon the multiple mechanisms of membrane perturbation by antimicrobial peptides. Curr Top Med Chem. July;2016.(In press). PubMed/NCBI | |
Wang C, Zolotarskaya OY, Nair SS, Ehrhardt CJ, Ohman DE, Wynne KJ and Yadavalli VK: Real-time observation of antimicrobial polycation effects on Escherichia coli: Adapting the carpet model for membrane disruption to quaternary copolyoxetanes. Langmuir. 32:2975–2984. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bechinger B: The SMART model: Soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J Pept Sci. 21:346–355. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mulder KC, Lima LA, Miranda VJ, Dias SC and Franco OL: Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides. Front Microbiol. 4:3212013. View Article : Google Scholar : PubMed/NCBI | |
Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, et al: Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA. 109:6566–6571. 2012. View Article : Google Scholar : PubMed/NCBI | |
Linkermann A, Konstantinidis K and Kitsis RN: Catch me if you can: Targeting the mitochondrial permeability transition pore in myocardial infarction. Cell Death Differ. 23:1–2. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, et al: Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife. 2:e007722013. View Article : Google Scholar : PubMed/NCBI | |
Farsinejad S, Gheisary Z, Samani Ebrahimi S and Alizadeh AM: Mitochondrial targeted peptides for cancer therapy. Tumour Biol. 36:5715–5725. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng MX, Ning JF, Yu JY, Chen DD, Meng XL, Xu JP and Zhang J: Antitumor activity of recombinant antimicrobial peptide penaeidin-2 against kidney cancer cells. J Huazhong Univ Sci Technolog Med Sci. 34:529–534. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S and Hoskin DW: Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res. 13:R1022011. View Article : Google Scholar : PubMed/NCBI | |
Hilchie AL, Conrad DM, Coombs MR, Zemlak T, Doucette CD, Liwski RS and Hoskin DW: Pleurocidin-family cationic antimicrobial peptides mediate lysis of multiple myeloma cells and impair the growth of multiple myeloma xenografts. Leuk Lymphoma. 54:2255–2262. 2013. View Article : Google Scholar : PubMed/NCBI | |
Eike LM, Yang N, Rekdal Ø and Sveinbjørnsson B: The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells. Oncotarget. 6:34910–34923. 2015.PubMed/NCBI | |
Burns KE, McCleerey TP and Thévenin D: pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Sci Rep. 6:284652016. View Article : Google Scholar : PubMed/NCBI | |
Mandal SM, Pati BR, Chakraborty R and Franco OL: New insights into the bioactivity of peptides from probiotics. Front Biosci (Elite Ed). 8:450–459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gaspar D, Veiga AS and Castanho MA: From antimicrobial to anticancer peptides. A review. Front Microbiol. 4:2942013. View Article : Google Scholar : PubMed/NCBI | |
Liao W, Zhang R, Dong C, Yu Z and Ren J: Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facile synthesis and mechanistic investigation of anticancer activity. Int J Nanomed. 11:1305–1321. 2016. | |
Svensen N, Walton JG and Bradley M: Peptides for cell-selective drug delivery. Trends Pharmacol Sci. 33:186–192. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wakabayashi N, Yano Y, Kawano K and Matsuzaki K: A pH-dependent charge reversal peptide for cancer targeting. Eur Biophys J. 46:121–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu X and Liu S: Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures. Dalton Trans. 44:3904–3922. 2015. View Article : Google Scholar : PubMed/NCBI | |
Balducci A, Wen Y, Zhang Y, Helfer BM, Hitchens TK, Meng WS, Wesa AK and Janjic JM: A novel probe for the non-invasive detection of tumor-associated inflammation. OncoImmunology. 2:e230342013. View Article : Google Scholar : PubMed/NCBI |