1
|
Imataka H, Sogawa K, Yasumoto K, Kikuchi
Y, Sasano K, Kobayashi A, Hayami M and Fujii-Kuriyama Y: Two
regulatory proteins that bind to the basic transcription element
(BTE), a GC box sequence in the promoter region of the rat P-4501A1
gene. EMBO J. 11:3663–3671. 1992.PubMed/NCBI
|
2
|
Black AR, Black JD and Azizkhan-Clifford
J: Sp1 and krüppel-like factor family of transcription factors in
cell growth regulation and cancer. J Cell Physiol. 188:143–160.
2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Sankpal UT, Goodison S, Abdelrahim M and
Basha R: Targeting Sp1 transcription factors in prostate cancer
therapy. Med Chem. 7:518–525. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Archer MC: Role of sp transcription
factors in the regulation of cancer cell metabolism. Genes Cancer.
2:712–719. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu S and Archer MC: Sp1 coordinately
regulates de novo lipogenesis and proliferation in cancer cells.
Int J Cancer. 126:416–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Farrow JM, Yang JC and Evans CP: Autophagy
as a modulator and target in prostate cancer. Nat Rev Urol.
11:508–516. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Alam H, Maizels ET, Park Y, Ghaey S,
Feiger ZJ, Chandel NS and Hunzicker-Dunn M: Follicle-stimulating
hormone activation of hypoxia-inducible factor-1 by the
phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain
(Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary
for induction of select protein markers of follicular
differentiation. J Biol Chem. 279:19431–19440. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chiavarina B, Whitaker-Menezes D,
Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell
RG, Smith J, Daniel R, Sotgia F, et al: Pyruvate kinase expression
(PKM1 and PKM2) in cancer-associated fibroblasts drives stromal
nutrient production and tumor growth. Cancer Biol Ther.
12:1101–1113. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ahmad F, Dixit D, Joshi SD and Sen E: G9a
inhibition induced PKM2 regulates autophagic responses. Int J
Biochem Cell Biol. 78:87–95. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang W and Lu Z: Regulation and function
of pyruvate kinase M2 in cancer. Cancer Lett. 339:153–158. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Eng CH and Abraham RT: The autophagy
conundrum in cancer: Influence of tumorigenic metabolic
reprogramming. Oncogene. 30:4687–4696. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Peng X, Gong F, Chen Y, Jiang Y, Liu J, Yu
M, Zhang S, Wang M, Xiao G and Liao H: Autophagy promotes
paclitaxel resistance of cervical cancer cells: Involvement of
Warburg effect activated hypoxia-induced factor 1-α-mediated
signaling. Cell Death Dis. 5:e13672014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang
P, Hu C and Liu Y: Hypoxia-induced autophagy reduces
radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon
cancer cells. Int J Oncol. 46:750–756. 2015.PubMed/NCBI
|
16
|
Schäfer D, Hamm-Künzelmann B and Brand K:
Glucose regulates the promoter activity of aldolase A and pyruvate
kinase M2 via dephosphorylation of Sp1. FEBS Lett. 417:325–328.
1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Discher DJ, Bishopric NH, Wu X, Peterson
CA and Webster KA: Hypoxia regulates beta-enolase and pyruvate
kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC
element. J Biol Chem. 273:26087–26093. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Khan AP, Rajendiran TM, Ateeq B, Asangani
IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei
JT, et al: The role of sarcosine metabolism in prostate cancer
progression. Neoplasia. 15:491–501. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tennakoon JB, Shi Y, Han JJ, Tsouko E,
White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, et al:
Androgens regulate prostate cancer cell growth via an
AMPK-PGC-1α-mediated metabolic switch. Oncogene. 33:5251–5261.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cao C, Subhawong T, Albert JM, Kim KW,
Geng L, Sekhar KR, Gi YJ and Lu B: Inhibition of mammalian target
of rapamycin or apoptotic pathway induces autophagy and
radiosensitizes PTEN null prostate cancer cells. Cancer Res.
66:10040–10047. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bennett HL, Stockley J, Fleming JT, Mandal
R, OPrey J, Ryan KM, Robson CN and Leung HY: Does androgen-ablation
therapy (AAT) associated autophagy have a pro-survival effect in
LNCaP human prostate cancer cells? BJU Int. 111:672–682. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Li M, Jiang X, Liu D, Na Y, Gao GF and Xi
Z: Autophagy protects LNCaP cells under androgen deprivation
conditions. Autophagy. 4:54–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Giatromanolaki A, Sivridis E, Mendrinos S,
Koutsopoulos AV and Koukourakis MI: Autophagy proteins in prostate
cancer: relation with anaerobic metabolism and Gleason score. Urol
Oncol. 32:39.e11–38. 2014. View Article : Google Scholar
|
24
|
Wong N, De Melo J and Tang D: PKM2, a
central point of regulation in cancer metabolism. Int J Cell Biol.
2013:2425132013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Netzker R, Weigert C and Brand K: Role of
the stimulatory proteins Sp1 and Sp3 in the regulation of
transcription of the rat pyruvate kinase M gene. Eur J Biochem.
245:174–181. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jiang M: Interplay between autophagy and
metabolism in Ras mutation-induced tumorigenesis. Asian J Androl.
13:610–611. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Altuntas S, Rossin F, Marsella C, DEletto
M, Diaz-Hidalgo L, Farrace MG, Campanella M, Antonioli M, Fimia GM
and Piacentini M: The transglutaminase type 2 and pyruvate kinase
isoenzyme M2 interplay in autophagy regulation. Oncotarget.
6:44941–44954. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bellot G, Garcia-Medina R, Gounon P,
Chiche J, Roux D, Pouysségur J and Mazure NM: Hypoxia-induced
autophagy is mediated through hypoxia-inducible factor induction of
BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol.
29:2570–2581. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
OMeally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu D, Tao T, Xu B, Chen S, Liu C, Zhang
L, Lu K, Huang Y, Jiang L, Zhang X, et al: MiR-361-5p acts as a
tumor suppressor in prostate cancer by targeting signal transducer
and activator of transcription-6 (STAT6). Biochem Biophys Res
Commun. 445:151–156. 2014. View Article : Google Scholar : PubMed/NCBI
|