1
|
Farhadieh RD, Rees CG, Yang JL, Salardini
A, Russell P and Smee R: Radiotherapy in larynx squamous cell
carcinoma is not associated with an increased diagnosis of second
primary tumours. Clin Oncol (R Coll Radiol). 21:315–319. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yilmaz M, Karatas OF, Yuceturk B, Dag H,
Yener M and Ozen M: Alpha-B-crystallin expression in human
laryngeal squamous cell carcinoma tissues. Head Neck. 37:1344–1348.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jemal A, Siegel R, Ward E, Murray T, Xu J
and Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 57:43–66.
2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tai P, Yu E, Shiels R and Tonita J:
Long-term survival rates of laryngeal cancer patients treated by
radiation and surgery, radiation alone, and surgery alone: Studied
by lognormal and Kaplan-Meier survival methods. BMC Cancer.
5:132005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Varghese BT, Sebastian P and Mathew A:
Treatment outcome in patients undergoing surgery for carcinoma
larynx and hypopharynx: A follow-up study. Acta Otolaryngol.
129:1480–1485. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ghaffar S, Akhtar S, Ikram M, Imam SZ and
Sepah YJ: Comparison of different treatment modalities in advanced
laryngeal hypopharyngeal squamous cell carcinoma. J Coll Physicians
Surg Pak. 20:171–174. 2010.PubMed/NCBI
|
8
|
Belcher R, Hayes K, Fedewa S and Chen AY:
Current treatment of head and neck squamous cell cancer. J Surg
Oncol. 110:551–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cooper JS, Zhang Q, Pajak TF, Forastiere
AA, Jacobs J, Saxman SB, Kish JA, Kim HE, Cmelak AJ, Rotman M, et
al: Long-term follow-up of the RTOG 9501/intergroup phase III
trial: Postoperative concurrent radiation therapy and chemotherapy
in high-risk squamous cell carcinoma of the head and neck. Int J
Radiat Oncol Biol Phys. 84:1198–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sauk JJ, Nikitakis N and Siavash H: Hsp47
a novel collagen binding serpin chaperone, autoantigen and
therapeutic target. Front Biosci. 10:107–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bekri S, Adélaïde J, Merscher S,
Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D, Kelley PM,
Pébusque MJ, Theillet C, Birnbaum D, et al: Detailed map of a
region commonly amplified at 11q13->q14 in human breast
carcinoma. Cytogenet Cell Genet. 79:125–131. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li D, Guang W, Abuzeid WM, Roy S, Gao GP,
Sauk JJ and O'Malley BW Jr: Novel adenoviral gene delivery system
targeted against head and neck cancer. Laryngoscope. 118:650–658.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kwon YJ, Lee SJ, Koh JS, Kim SH, Kim YJ
and Park JH: Expression patterns of aurora kinase B, heat shock
protein 47, and periostin in esophageal squamous cell carcinoma.
Oncol Res. 18:141–151. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Reese C, Lee R, Bonner M, Perry B, Heywood
J, Silver RM, Tourkina E, Visconti RP and Hoffman S: Fibrocytes in
the fibrotic lung: Altered phenotype detected by flow cytometry.
Front Pharmacol. 5:1412014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao D, Jiang X, Yao C, Zhang L, Liu H,
Xia H and Wang Y: Heat shock protein 47 regulated by miR-29a to
enhance glioma tumor growth and invasion. J Neurooncol. 118:39–47.
2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yamamoto N, Kinoshita T, Nohata N, Yoshino
H, Itesako T, Fujimura L, Mitsuhashi A, Usui H, Enokida H, Nakagawa
M, et al: Tumor-suppressive microRNA-29a inhibits cancer
cell migration and invasion via targeting HSP47 in cervical
squamous cell carcinoma. Int J Oncol. 43:1855–1863. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Araki K, Mikami T, Yoshida T, Kikuchi M,
Sato Y, Oh-ishi M, Kodera Y, Maeda T and Okayasu I: High expression
of HSP47 in ulcerative colitis-associated carcinomas: Proteomic
approach. Br J Cancer. 101:492–497. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen HX and Cleck JN: Adverse effects of
anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol.
6:465–477. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tseng MY, Liu SY, Chen HR, Wu YJ, Chiu CC,
Chan PT, Chiang WF, Liu YC, Lu CY, Jou YS, et al: Serine protease
inhibitor (SERPIN) B1 promotes oral cancer cell motility and is
over-expressed in invasive oral squamous cell carcinoma. Oral
Oncol. 45:771–776. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Catzavelos C, Bhattacharya N, Ung YC,
Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I,
Kapusta L, et al: Decreased levels of the cell-cycle inhibitor
p27Kip1 protein: Prognostic implications in primary breast cancer.
Nat Med. 3:227–230. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chappuis PO, Donato E, Goffin JR, Wong N,
Bégin LR, Kapusta LR, Brunet JS, Porter P and Foulkes WD: Cyclin E
expression in breast cancer: Predicting germline BRCA1
mutations, prognosis and response to treatment. Ann Oncol.
16:735–742. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lazaris AC, Theodoropoulos GE, Davaris PS,
Panoussopoulos D, Nakopoulou L, Kittas C and Golematis BC: Heat
shock protein 70 and HLA-DR molecules tissue expression. Prognostic
implications in colorectal cancer. Dis Colon Rectum. 38:739–745.
1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Uozaki H, Horiuchi H, Ishida T, Iijima T,
Imamura T and Machinami R: Overexpression of resistance-related
proteins (metallothioneins, glutathione-S-transferase pi, heat
shock protein 27, and lung resistance-related protein) in
osteosarcoma. Relationship with poor prognosis. Cancer.
79:2336–2344. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Vargas-Roig LM, Gago FE, Tello O, Aznar JC
and Ciocca DR: Heat shock protein expression and drug resistance in
breast cancer patients treated with induction chemotherapy. Int J
Cancer. 79:468–475. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Santarosa M, Favaro D, Quaia M and
Galligioni E: Expression of heat shock protein 72 in renal cell
carcinoma: Possible role and prognostic implications in cancer
patients. Eur J Cancer. 33:873–877. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pick E, Kluger Y, Giltnane JM, Moeder C,
Camp RL, Rimm DL and Kluger HM: High HSP90 expression is associated
with decreased survival in breast cancer. Cancer Res. 67:2932–2937.
2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hermisson M, Strik H, Rieger J, Dichgans
J, Meyermann R and Weller M: Expression and functional activity of
heat shock proteins in human glioblastoma multiforme. Neurology.
54:1357–1365. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Têtu B, Lacasse B, Bouchard HL, Lagacé R,
Huot J and Landry J: Prognostic influence of HSP-27 expression in
malignant fibrous histiocytoma: A clinicopathological and
immunohistochemical study. Cancer Res. 52:2325–2328.
1992.PubMed/NCBI
|
29
|
Lee HW, Kwon J, Kang MC, Noh MK, Koh JS,
Kim JH and Park JH: Overexpression of HSP47 in esophageal squamous
cell carcinoma: Clinical implications and functional analysis. Dis
Esophagus. 29:848–855. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu J, Xiong G, Fu H, Evers BM, Zhou BP
and Xu R: Chaperone Hsp47 drives malignant growth and invasion by
modulating an ECM gene network. Cancer Res. 75:1580–1591. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Singh K, Agrawal NK, Gupta SK, Mohan G,
Chaturvedi S and Singh K: Decreased expression of heat shock
proteins may lead to compromised wound healing in type 2 diabetes
mellitus patients. J Diabetes Complications. 29:578–588. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen J, Zhao S, Liu Y, Cen Y and Nicolas
C: Effect of captopril on collagen metabolisms in keloid fibroblast
cells. ANZ J Surg. 86:1046–1051. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kang SH, Kang KW, Kim KH, Kwon B, Kim SK,
Lee HY, Kong SY, Lee ES, Jang SG and Yoo BC: Upregulated HSP27 in
human breast cancer cells reduces Herceptin susceptibility by
increasing Her2 protein stability. BMC Cancer. 8:2862008.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tweedle EM, Khattak I, Ang CW, Nedjadi T,
Jenkins R, Park BK, Kalirai H, Dodson A, Azadeh B, Terlizzo M, et
al: Low molecular weight heat shock protein HSP27 is a prognostic
indicator in rectal cancer but not colon cancer. Gut. 59:1501–1510.
2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Voll EA, Ogden IM, Pavese JM, Huang X, Xu
L, Jovanovic BD and Bergan RC: Heat shock protein 27 regulates
human prostate cancer cell motility and metastatic progression.
Oncotarget. 5:2648–2663. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ciocca DR and Calderwood SK: Heat shock
proteins in cancer: Diagnostic, prognostic, predictive, and
treatment implications. Cell Stress Chaperones. 10:86–103. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Xue L, Yang L, Jin ZA, Gao F, Kang JQ, Xu
GH, Liu B, Li H, Wang XJ, Liu LJ, et al: Increased expression of
HSP27 inhibits invasion and metastasis in human esophageal squamous
cell carcinoma. Tumour Biol. 35:6999–7007. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Langer R, Ott K, Specht K, Becker K,
Lordick F, Burian M, Herrmann K, Schrattenholz A, Cahill MA,
Schwaiger M, et al: Protein expression profiling in esophageal
adenocarcinoma patients indicates association of heat-shock protein
27 expression and chemotherapy response. Clin Cancer Res.
14:8279–8287. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yohannes E, Chang J, Tar MT, Davies KP and
Chance MR: Molecular targets for diabetes mellitus-associated
erectile dysfunction. Mol Cell Proteomics. 9:565–578. 2010.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Kawasaki K, Ushioda R, Ito S, Ikeda K,
Masago Y and Nagata K: Deletion of the collagen-specific molecular
chaperone Hsp47 causes endoplasmic reticulum stress-mediated
apoptosis of hepatic stellate cells. J Biol Chem. 290:3639–3646.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Miyata S, Mizuno T, Koyama Y, Katayama T
and Tohyama M: The endoplasmic reticulum-resident chaperone heat
shock protein 47 protects the Golgi apparatus from the effects of
O-glycosylation inhibition. PLoS One. 8:e697322013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Zeng YL, Zhang XJ, Shang J, Ding GQ and
Kang Y: Single-chain human anti-EGFR antibody/truncated protamine
fusion protein carrying Hsp47 siRNA can induce apoptosis of human
hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi. 22:843–848.
2014.(In Chinese). PubMed/NCBI
|
43
|
Pećina-Slaus N: Wnt signal transduction
pathway and apoptosis: A review. Cancer Cell Int. 10:222010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Fulda S and Debatin KM: Extrinsic versus
intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene.
25:4798–4811. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Faião-Flores F, Coelho PR, Toledo
Arruda-Neto JD, Maria-Engler SS, Tiago M, Capelozzi VL, Giorgi RR
and Maria DA: Apoptosis through Bcl-2/Bax and cleaved caspase
up-regulation in melanoma treated by boron neutron capture therapy.
PLoS One. 8:e596392013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kiefer MC, Brauer MJ, Powers VC, Wu JJ,
Umansky SR, Tomei LD and Barr PJ: Modulation of apoptosis by the
widely distributed Bcl-2 homologue Bak. Nature. 374:736–739. 1995.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Chung TK, Cheung TH, Lo WK, Yim SF, Yu MY,
Krajewski S, Reed JC and Wong YF: Expression of apoptotic
regulators and their significance in cervical cancer. Cancer Lett.
180:63–68. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sharma H, Sen S, Mathur M, Bahadur S and
Singh N: Combined evaluation of expression of telomerase, survivin,
and anti-apoptotic Bcl-2 family members in relation to loss of
differentiation and apoptosis in human head and neck cancers. Head
Neck. 26:733–740. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kleinberg L and Davidson B: Cell survival
and apoptosis-related molecules in cancer cells in effusions: A
comprehensive review. Diagn Cytopathol. 37:613–624. 2009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Olsson M and Zhivotovsky B: Caspases and
cancer. Cell Death Differ. 18:1441–1449. 2011. View Article : Google Scholar : PubMed/NCBI
|