1
|
Lane DP and Crawford LV: T antigen is
bound to a host protein in SV40-transformed cells. Nature.
278:261–263. 1979. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaghad M, Bonnet H, Yang A, Creancier L,
Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, et al:
Monoallelically expressed gene related to p53 at 1p36, a region
frequently deleted in neuroblastoma and other human cancers. Cell.
90:809–819. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang A, Kaghad M, Wang Y, Gillett E,
Fleming MD, Dötsch V, Andrews NC, Caput D and McKeon F: p63, a p53
homolog at 3q27-29, encodes multiple products with transactivating,
death-inducing, and dominant-negative activities. Mol Cell.
2:305–316. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bisio A, Ciribilli Y, Fronza G, Inga A and
Monti P: TP53 mutants in the tower of babel of cancer progression.
Hum Mutat. 35:689–701. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Collavin L, Lunardi A and Del Sal G:
p53-family proteins and their regulators: Hubs and spokes in tumor
suppression. Cell Death Differ. 17:901–911. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wei J, Zaika E and Zaika A: p53 family:
Role of protein isoforms in human cancer. J Nucleic Acids.
2012:6873592012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Malkin D: Li-fraumeni syndrome. Genes
Cancer. 2:475–484. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Monti P, Ciribilli Y, Jordan J, Menichini
P, Umbach DM, Resnick MA, Luzzatto L, Inga A and Fronza G:
Transcriptional functionality of germ line p53 mutants influences
cancer phenotype. Clin Cancer Res. 13:3789–3795. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Monti P, Perfumo C, Bisio A, Ciribilli Y,
Menichini P, Russo D, Umbach DM, Resnick MA, Inga A and Fronza G:
Dominant-negative features of mutant TP53 in germline carriers have
limited impact on cancer outcomes. Mol Cancer Res. 9:271–279. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang A, Walker N, Bronson R, Kaghad M,
Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, et
al: p73-deficient mice have neurological, pheromonal and
inflammatory defects but lack spontaneous tumours. Nature.
404:99–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mills AA, Zheng B, Wang XJ, Vogel H, Roop
DR and Bradley A: p63 is a p53 homologue required for limb and
epidermal morphogenesis. Nature. 398:708–713. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rufini A, Agostini M, Grespi F, Tomasini
R, Sayan BS, Niklison-Chirou MV, Conforti F, Velletri T, Mastino A,
Mak TW, et al: p73 in Cancer. Genes Cancer. 2:491–502. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Rinne T, Brunner HG and van Bokhoven H:
p63-associated disorders. Cell Cycle. 6:262–268. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Monti P, Russo D, Bocciardi R, Foggetti G,
Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A,
Viadiu H, et al: EEC- and ADULT-associated TP63 mutations exhibit
functional heterogeneity toward P63 responsive sequences. Hum
Mutat. 34:894–904. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Flores ER, Sengupta S, Miller JB, Newman
JJ, Bronson R, Crowley D, Yang A, McKeon F and Jacks T: Tumor
predisposition in mice mutant for p63 and p73: Evidence for broader
tumor suppressor functions for the p53 family. Cancer Cell.
7:363–373. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jacks T, Remington L, Williams BO, Schmitt
EM, Halachmi S, Bronson RT and Weinberg RA: Tumor spectrum analysis
in p53-mutant mice. Curr Biol. 4:1–7. 1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vogelstein B and Kinzler KW: Carcinogens
leave fingerprints. Nature. 355:209–210. 1992. View Article : Google Scholar : PubMed/NCBI
|
18
|
Harris CC: p53: At the crossroads of
molecular carcinogenesis and risk assessment. Science.
262:1980–1981. 1993. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fronza G, Inga A, Monti P, Scott G,
Campomenosi P, Menichini P, Ottaggio L, Viaggi S, Burns PA, Gold B,
et al: The yeast p53 functional assay: A new tool for molecular
epidemiology. Hopes and facts. Mutat Res. 462:293–301. 2000.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Leroy B, Fournier JL, Ishioka C, Monti P,
Inga A, Fronza G and Soussi T: The TP53 website: An integrative
resource centre for the TP53 mutation database and TP53 mutant
analysis. Nucleic Acids Res. 41(D1): D962–D969. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Greenblatt MS, Bennett WP, Hollstein M and
Harris CC: Mutations in the p53 tumor suppressor gene: Clues to
cancer etiology and molecular pathogenesis. Cancer Res.
54:4855–4878. 1994.PubMed/NCBI
|
22
|
International Agency for Research on
Cancer (IARC): IARC Monographs on the Evaluation of Carcinogenic
Risk of Chemicals to Humans: Solar and Ultraviolet Radiation. 55.
IARC; Lyon, France: 1992, http://monographs.iarc.fr/ENG/Monographs/vol55
|
23
|
Clingen PH, Arlett CF, Roza L, Mori T,
Nikaido O and Green MH: Induction of cyclobutane pyrimidine dimers,
pyrimidine(6–4)pyrimidone photoproducts, and Dewar valence isomers
by natural sunlight in normal human mononuclear cells. Cancer Res.
55:2245–2248. 1995.PubMed/NCBI
|
24
|
Cadet J, Sage E and Douki T: Ultraviolet
radiation-mediated damage to cellular DNA. Mutat Res. 571:3–17.
2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Vogelstein B and Kinzler KW: Cancer genes
and the pathways they control. Nat Med. 10:789–799. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Parmigiani G, Boca S, Lin J, Kinzler KW,
Velculescu V and Vogelstein B: Design and analysis issues in
genome-wide somatic mutation studies of cancer. Genomics. 93:17–21.
2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Carter H, Chen S, Isik L, Tyekucheva S,
Velculescu VE, Kinzler KW, Vogelstein B and Karchin R:
Cancer-specific high-throughput annotation of somatic mutations:
Computational prediction of driver missense mutations. Cancer Res.
69:6660–6667. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Youn A and Simon R: Identifying cancer
driver genes in tumor genome sequencing studies. Bioinformatics.
27:175–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vogelstein B and Kinzler KW: The path to
cancer - three strikes and you're out. N Engl J Med. 373:1895–1898.
2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tomasetti C, Marchionni L, Nowak MA,
Parmigiani G and Vogelstein B: Only three driver gene mutations are
required for the development of lung and colorectal cancers. Proc
Natl Acad Sci USA. 112:118–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Miller AJ and Mihm MC Jr: Melanoma. N Engl
J Med. 355:51–65. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Marks R: Epidemiology of melanoma. Clin
Exp Dermatol. 25:459–463. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pleasance ED, Cheetham RK, Stephens PJ,
McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR,
Bignell GR, et al: A comprehensive catalogue of somatic mutations
from a human cancer genome. Nature. 463:191–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hodis E, Watson IR, Kryukov GV, Arold ST,
Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C,
et al: A landscape of driver mutations in melanoma. Cell.
150:251–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shain AH, Yeh I, Kovalyshyn I, Sriharan A,
Talevich E, Gagnon A, Dummer R, North J, Pincus L, Ruben B, et al:
The genetic evolution of melanoma from precursor lesions. N Engl J
Med. 373:1926–1936. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shain AH and Bastian BC: From melanocytes
to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Romano RA and Sinha S: Family matters:
Sibling rivalry and bonding between p53 and p63 in cancer. Exp
Dermatol. 23:238–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Berger MF, Hodis E, Heffernan TP, Deribe
YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E,
Ghosh P, et al: Melanoma genome sequencing reveals frequent PREX2
mutations. Nature. 485:502–506. 2012.PubMed/NCBI
|
41
|
Krauthammer M, Kong Y, Ha BH, Evans P,
Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, et
al: Exome sequencing identifies recurrent somatic RAC1 mutations in
melanoma. Nat Genet. 44:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rinne T, Bolat E, Meijer R, Scheffer H and
van Bokhoven H: Spectrum of p63 mutations in a selected patient
cohort affected with ankyloblepharon-ectodermal defects-cleft
lip/palate syndrome (AEC). Am J Med Genet A. 149A:1948–1951. 2009.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Clements SE, Techanukul T, Coman D,
Mellerio JE and McGrath JA: Molecular basis of EEC (ectrodactyly,
ectodermal dysplasia, clefting) syndrome: Five new mutations in the
DNA-binding domain of the TP63 gene and genotype-phenotype
correlation. Br J Dermatol. 162:201–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Adams WT and Skopek TR: Statistical test
for the comparison of samples from mutational spectra. J Mol Biol.
194:391–396. 1987. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cariello NF, Piegorsch WW, Adams WT and
Skopek TR: Computer program for the analysis of mutational spectra:
Application to p53 mutations. Carcinogenesis. 15:2281–2285. 1994.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Andreotti V, Ciribilli Y, Monti P, Bisio
A, Lion M, Jordan J, Fronza G, Menichini P, Resnick MA and Inga A:
p53 transactivation and the impact of mutations, cofactors and
small molecules using a simplified yeast-based screening system.
PLoS One. 6:e206432011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kushnirov VV: Rapid and reliable protein
extraction from yeast. Yeast. 16:857–860. 2000. View Article : Google Scholar : PubMed/NCBI
|
48
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Adorno M, Cordenonsi M, Montagner M,
Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo
V, et al: A Mutant-p53/Smad complex opposes p63 to empower
TGFbeta-induced metastasis. Cell. 137:87–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Perrot CY, Javelaud D and Mauviel A:
Insights into the transforming growth factor-β signaling pathway in
cutaneous melanoma. Ann Dermatol. 25:135–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Matin RN, Chikh A, Chong SL, Mesher D,
Graf M, Sanza' P, Senatore V, Scatolini M, Moretti F, Leigh IM, et
al: p63 is an alternative p53 repressor in melanoma that confers
chemoresistance and a poor prognosis. J Exp Med. 210:581–603. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Rossi D, Khiabanian H, Spina V, Ciardullo
C, Bruscaggin A, Famà R, Rasi S, Monti S, Deambrogi C, De Paoli L,
et al: Clinical impact of small TP53 mutated subclones in chronic
lymphocytic leukemia. Blood. 123:2139–2147. 2014. View Article : Google Scholar : PubMed/NCBI
|