1
|
Ni HM, Bhakta A, Wang S, Li Z, Manley S,
Huang H, Copple B and Ding WX: Role of hypoxia inducing factor-1β
in alcohol-induced autophagy, steatosis and liver injury in mice.
PLoS One. 9:e1158492014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Orman ES, Odena G and Bataller R:
Alcoholic liver disease: Pathogenesis, management, and novel
targets for therapy. J Gastroenterol Hepatol. 28 Suppl 1:S77–S84.
2013. View Article : Google Scholar
|
3
|
Akhlaghi M: Non-alcoholic fatty liver
disease: Beneficial effects of flavonoids. Phytother Res.
30:1559–1571. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moon PD, Choi IH and Kim HM: Naringenin
suppresses the production of thymic stromal lymphopoietin through
the blockade of RIP2 and caspase-1 signal cascade in mast cells.
Eur J Pharmacol. 671:128–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ke JY, Kliewer KL, Hamad EM, Cole RM,
Powell KA, Andridge RR, Straka SR, Yee LD and Belury MA: The
flavonoid, naringenin, decreases adipose tissue mass and attenuates
ovariectomy-associated metabolic disturbances in mice. Nutr Metab.
12:12015. View Article : Google Scholar
|
6
|
Mulvihill EE, Allister EM, Sutherland BG,
Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA and Huff
MW: Naringenin prevents dyslipidemia, apolipoprotein B
overproduction, and hyperinsulinemia in LDL receptor-null mice with
diet-induced insulin resistance. Diabetes. 58:2198–2210. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Purushotham A, Tian M and Belury MA: The
citrus fruit flavonoid naringenin suppresses hepatic glucose
production from Fao hepatoma cells. Mol Nutr Food Res. 53:300–307.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chtourou Y, Fetoui H, Jemai R, Ben Slima
A, Makni M and Gdoura R: Naringenin reduces cholesterol-induced
hepatic inflammation in rats by modulating matrix
metalloproteinases-2, 9 via inhibition of nuclear factor κB
pathway. Eur J Pharmacol. 746:96–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zar Kalai F, Han J, Ksouri R, El Omri A,
Abdelly C and Isoda H: Antiobesity effects of an edible halophyte
Nitraria retusa Forssk in 3T3-L1 preadipocyte differentiation and
in C57B6J/L mice fed a high fat diet-induced obesity. Evid Based
Complement Alternat Med. 2013:3686582013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Howarth DL, Yin C, Yeh K and Sadler KC:
Defining hepatic dysfunction parameters in two models of fatty
liver disease in zebrafish larvae. Zebrafish. 10:199–210. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Dai W, Wang K, Zheng X, Chen X, Zhang W,
Zhang Y, Hou J and Liu L: High fat plus high cholesterol diet lead
to hepatic steatosis in zebrafish larvae: A novel model for
screening anti-hepatic steatosis drugs. Nutr Metab. 12:422015.
View Article : Google Scholar
|
12
|
Passeri MJ, Cinaroglu A, Gao C and Sadler
KC: Hepatic steatosis in response to acute alcohol exposure in
zebrafish requires sterol regulatory element binding protein
activation. Hepatology. 49:443–452. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Greenspan P, Mayer EP and Fowler SD: Nile
red: A selective fluorescent stain for intracellular lipid
droplets. J Cell Biol. 100:965–973. 1985. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tsedensodnom O, Vacaru AM, Howarth DL, Yin
C and Sadler KC: Ethanol metabolism and oxidative stress are
required for unfolded protein response activation and steatosis in
zebrafish with alcoholic liver disease. 1213–1226. 2013.
|
15
|
Howarth DL, Passeri M and Sadler KC:
Drinks like a fish: Using zebrafish to understand alcoholic liver
disease. Alcohol Clin Exp Res. 35:826–829. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tseng H, Hseu T, Buhler D, Wang W and Hu
C: Constitutive and xenobiotics-induced expression of a novel CYP3A
gene from zebrafish larva. Toxicol Appl Pharmacol. 205:247–258.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Suganya S, Nandagopal B and Anbarasu A:
Natural inhibitors of HMG CoA reductase - an in silico approach
through molecular docking and simulation studies. J Cell Biochem.
99:1–6. 2016.
|
18
|
Tian Y, Zhang W, Zhao S, Sun Y, Bian Y,
Chen T, Du Y, Zhang J, Wang Z, Huang T, et al: FADS1-FADS2 gene
cluster confers risk to polycystic ovary syndrome. Sci Rep.
6:211952016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zappaterra M, Deserti M, Mazza R, Braglia
S, Zambonelli P and Davoli R: A gene and protein expression study
on four porcine genes related to intramuscular fat deposition. Meat
Sci. 121:27–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Olgiati S, Skorvanek M, Quadri M, Minneboo
M, Graafland J, Breedveld GJ, Bonte R, Ozgur Z, Van den Hout MC,
Schoonderwoerd K, et al: Paroxysmal exercise-induced dystonia
within the phenotypic spectrum of ECHS1 deficiency. Mov Disord.
31:1041–1048. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Storch J and Thumser AE: The fatty acid
transport function of fatty acid-binding proteins. Biochim Biophys
Acta. 1486:28–44. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ren Z, Wang X, Xu M, Yang F, Frank JA, Ke
ZJ and Luo J: Binge ethanol exposure causes endoplasmic reticulum
stress, oxidative stress and tissue injury in the pancreas.
Oncotarget. 7:54303–54316. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zheng X, Dai W, Chen X, Wang K, Zhang W,
Liu L and Hou J: Caffeine reduces hepatic lipid accumulation
through regulation of lipogenesis and ER stress in zebrafish
larvae. J Biomed Sci. 22:1052015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao XX, Zhang YB, Ni PL, Wu ZL, Yan YC
and Li YP: Protein arginine methyltransferase 6 (Prmt6) is
essential for early zebrafish development through the direct
suppression of gadd45αa stress sensor gene. J Biol Chem.
291:402–412. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Howarth DL, Lindtner C, Vacaru AM,
Sachidanandam R, Tsedensodnom O, Vasilkova T, Buettner C and Sadler
KC: Activating transcription factor 6 is necessary and sufficient
for alcoholic fatty liver disease in zebrafish. PLoS Genet.
10:e10043352014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cho KW, Kim YO, Andrade JE, Burgess JR and
Kim YC: Dietary naringenin increases hepatic peroxisome
proliferators-activated receptor α protein expression and decreases
plasma triglyceride and adiposity in rats. Eur J Nutr. 50:81–88.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Goldwasser J, Cohen PY, Yang E, Balaguer
P, Yarmush ML and Nahmias Y: Transcriptional regulation of human
and rat hepatic lipid metabolism by the grapefruit flavonoid
naringenin: Role of PPARalpha, PPARgamma and LXRalpha. PLoS One.
5:e123992010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Alam MA, Subhan N, Rahman MM, Uddin SJ,
Reza HM and Sarker SD: Effect of citrus flavonoids, naringin and
naringenin, on metabolic syndrome and their mechanisms of action.
Adv Nutr. 5:404–417. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rahman K, Liu Y, Kumar P, Smith T, Thorn
NE, Farris AB and Anania FA: C/EBP homologous protein modulates
liraglutide-mediated attenuation of non-alcoholic steatohepatitis.
Lab Invest. 96:895–908. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Congiu M, Ryan MC and Desmond PV: No
increase in the expression of key unfolded protein response genes
in HCV genotype 3 patients with severe steatosis. Virus Res.
160:420–423. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cocci P, Mosconi G and Palermo FA: Partial
cloning, tissue distribution and effects of epigallocatechin
gallate on hepatic 3-hydroxy-3-methylglutaryl-CoA reductase mRNA
transcripts in goldfish (Carassius auratus). Gene. 545:220–225.
2014. View Article : Google Scholar : PubMed/NCBI
|