A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review)
- Authors:
- Yu He
- Dan Zhang
- Yanfang Yang
- Xixi Wang
- Xinyu Zhao
- Peng Zhang
- Hongxia Zhu
- Ningzhi Xu
- Shufang Liang
-
Affiliations: State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China, Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China - Published online on: January 9, 2018 https://doi.org/10.3892/or.2018.6203
- Pages: 883-892
This article is mentioned in:
Abstract
Linder P and Jankowsky E: From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 12:505–516. 2011. View Article : Google Scholar : PubMed/NCBI | |
Linder P and Fuller-Pace F: Happy birthday: 25 years of DEAD-box proteins. Methods Mol Biol. 1259:17–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tarn WY and Chang TH: The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA Biol. 6:17–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Lee SG, Park SH and Song K: Gene structure of the human DDX3 and chromosome mapping of its related sequences. Mol Cells. 12:209–214. 2001.PubMed/NCBI | |
Kotov AA, Olenkina OM, Godneeva BK, Adashev VE and Olenina LV: Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci Trends. 11:46–53. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rosner A and Rinkevich B: The DDX3 subfamily of the DEAD box helicases: Divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem. 14:2517–2525. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rodamilans B and Montoya G: Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain. Acta Crystallogr Sect F Struct Biol Cryst Commun. 63:283–286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Högbom M, Collins R, Van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson Hedestam GB and Schiavone LH: Crystal structure of conserved domains 1 and 2 of the human DEAD box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol. 372:150–159. 2007. View Article : Google Scholar : PubMed/NCBI | |
Soto-Rifo R and Ohlmann T: The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. Wiley Interdiscip Rev RNA. 4:369–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rocak S and Linder P: DEAD-box proteins: The driving forces behind RNA metabolism. Nat Rev Mol Cell Biol. 5:232–241. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Licklider LJ, Gygi SP and Reed R: Comprehensive proteomic analysis of the human spliceosome. Nature. 419:182–185. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fröhlich A, Rojas-Araya B, Pereira-Montecinos C, Dellarossa A, Toro-Ascuy D, Prades-Pérez Y, García-de-Gracia F, Garcés-Alday A, Rubilar PS, Valiente-Echeverría F, et al: DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. Biochim Biophys Acta. 1859:719–730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yedavalli VS, Neuveut C, Chi YH, Kleiman L and Jeang KT: Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell. 119:381–392. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lai MC, Lee YH and Tarn WY: The DEAD-box RNA helicase DDX3 associates with export mRNPs as well as TAP and participates in translational control. Mol Biol Cell. 19:3847–3858. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chao CH, Chen CM, Cheng PL, Shih JW, Tsou AP and Lee YH: DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res. 66:6579–6588. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL and Reed R: Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36:4708–4718. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shih JW, Tsai TY, Chao CH and Wu Lee YH: Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene. 27:700–714. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oh S, Flynn RA, Floor SN, Purzner J, Martin L, Do BT, Schubert S, Vaka D, Morrissy S, Li Y, et al: Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget. 7:28169–28182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Zhou T, Jonasch E and Jope RS: DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta. 1833:1489–1497. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, Wu JC and Wu Lee YH: DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene. 25:1991–2003. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Chan CH, Chen CM, Tsai YS, Tsai TY, Wu Lee YH and You LR: Targeted inactivation of murine Ddx3×: Essential roles of Ddx3× in placentation and embryogenesis. Hum Mol Genet. 25:2905–2922. 2016.PubMed/NCBI | |
Bol GM, Xie M and Raman V: DDX3, a potential target for cancer treatment. Mol Cancer. 14:1882015. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Ryu WS: Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: Implications for immune evasion. PLoS Pathog. 6:e10009862010. View Article : Google Scholar : PubMed/NCBI | |
Angus AG, Dalrymple D, Boulant S, McGivern DR, Clayton RF, Scott MJ, Adair R, Graham S, Owsianka AM, Targett-Adams P, et al: Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. J Gen Virol. 9:122–132. 2010. View Article : Google Scholar | |
Huang JS, Chao CC, Su TL, Yeh SH, Chen DS, Chen CT, Chen PJ and Jou YS: Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun. 315:950–958. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li HK, Mai RT, Huang HD, Chou CH, Chang YA, Chang YW, You LR, Chen CM and Lee YH: DDX3 Represses stemness by epigenetically modulating tumor-suppressive miRNAs in hepatocellular carcinoma. Sci Rep. 6:286372016. View Article : Google Scholar : PubMed/NCBI | |
Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P Jr, Mukadam S, Van Diest P, Chen JH, Farabaugh P, et al: Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 27:3912–3922. 2008. View Article : Google Scholar : PubMed/NCBI | |
Botlagunta M, Krishnamachary B, Vesuna F, Winnard PT Jr, Bol GM, Patel AH and Raman V: Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells. PLoS One. 6:e175632011. View Article : Google Scholar : PubMed/NCBI | |
Bol GM, Raman V, van der Groep P, Vermeulen JF, Patel AH, van der Wall E and van Diest PJ: Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One. 8:e635482013. View Article : Google Scholar : PubMed/NCBI | |
Heerma van Voss MR, Schrijver WA, Ter Hoeve ND, Hoefnagel LD, Manson QF, van der Wall E, Raman V and van Diest PJ; Dutch distant breast cancer metastases consortium, : The prognostic effect of DDX3 upregulation in distant breast cancer metastases. Clin Exp Metastasis. 34:85–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Vesuna F, Botlagunta M, Bol GM, Irving A, Bergman Y, Hosmane RS, Kato Y, Winnard PT Jr and Raman V: NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget. 6:29901–29913. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heerma van Voss MR, Brilliant JD, Vesuna F, Bol GM, van der Wall E, van Diest PJ and Raman V: Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer. Med Oncol. 34:332017. View Article : Google Scholar : PubMed/NCBI | |
Wu DW, Liu WS, Wang J, Chen CY, Cheng YW and Lee H: Reduced p21WAF1/CIP1 via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res. 17:1895–1905. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu DW, Lee MC, Wang J, Chen CY, Cheng YW and Lee H: DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene. 33:1515–1526. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, et al: Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 7:648–669. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su CY, Lin TC, Lin YF, Chen MH, Lee CH, Wang HY, Lee YC, Liu YP, Chen CL and Hsiao M: DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer. Oncotarget. 6:18602–18612. 2015. View Article : Google Scholar : PubMed/NCBI | |
He TY, Wu DW, Lin PL, Wang L, Huang CC, Chou MC and Lee H: DDX3 promotes tumor invasion in colorectal cancer via the CK1ε/Dvl2 axis. Sci Rep. 6:214832016. View Article : Google Scholar : PubMed/NCBI | |
Wu DW, Lin PL, Cheng YW, Huang CC, Wang L and Lee H: 'KRAS-induced tumor invasion in colorectal cancer via the β-catenin/ZEB1 axis. Oncotarget. 7:22687–22699. 2016.PubMed/NCBI | |
Wu DW, Lin PL, Wang L, Huang CC and Lee H: The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer. Theranostics. 7:1114–1132. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heerma van Voss MR, Vesuna F, Trumpi K, Brilliant J, Berlinicke C, de Leng W, Kranenburg O, Offerhaus GJ, Bürger H, van der Wall E, et al: Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer. Oncotarget. 6:28312–28326. 2015.PubMed/NCBI | |
Lee CH, Lin SH, Yang SF, Yang SM, Chen MK, Lee H, Ko JL, Chen CJ and Yeh KT: Low/negative expression of DDX3 may predict poor prognosis in non-smoker patients with oral cancer. Oral Dis. 20:76–83. 2014. View Article : Google Scholar : PubMed/NCBI | |
Samal SK, Routray S, Veeramachaneni GK, Dash R and Botlagunta M: Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 5:99822015. View Article : Google Scholar : PubMed/NCBI | |
Heerma van Voss MR, van Kempen PM, Noorlag R, van Diest PJ, Willems SM and Raman V: DDX3 has divergent roles in head and neck squamous cell carcinomas in smoking versus non-smoking patients. Oral Dis. 21:270–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, Cole RN, Raman V and Loeb DM: RNA helicase DDX3: A novel therapeutic target in Ewing sarcoma. Oncogene. 35:2574–2583. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Vesuna F, Tantravedi S, Bol GM, Heerma van Voss MR, Nugent K, Malek R, Gabrielson K, van Diest PJ, Tran PT and Raman V: RK-33 Radio sensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res. 76:6340–6350. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Song L, Zhou T, Gillespie GY and Jope RS: The role of DDX3 in regulating Snail. Biochim Biophys Acta. 1813:438–447. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang S, Yang Z, Li D, Miao X, Yang L, Zou Q and Yuan Y: The clinical and pathological significance of nectin-2 and DDX3 expression in pancreatic ductal adenocarcinomas. Dis Markers. 2015:3795682015. View Article : Google Scholar : PubMed/NCBI | |
Miao X, Yang ZL, Xiong L, Zou Q, Yuan Y, Li J, Liang L, Chen M and Chen S: Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol. 6:179–190. 2013.PubMed/NCBI | |
Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, et al: Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 488:106–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, Phoenix TN, Hedlund E, Wei L, Zhu X, et al: Novel mutations target distinct subgroups of medulloblastoma. Nature. 488:43–48. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, Pan CM, Hu Y, Cai CP, Dong Y, et al: Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 47:1061–1066. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, et al: SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 365:2497–2506. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ojha J, Secreto CR, Rabe KG, Van Dyke DL, Kortum KM, Slager SL, Shanafelt TD, Fonseca R, Kay NE and Braggio E: Identification of recurrent truncated DDX3X mutations in chronic lymphocytic leukaemia. Br J Haematol. 169:445–448. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, Korswagen HC and Niehrs C: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science. 339:1436–1441. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Yu HI, Cho WC and Tarn WY: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene. 34:2790–2800. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, Zhang P, Zhu H, Xu N and Liang S: STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 7:71400–71416. 2016.PubMed/NCBI | |
Wang Y, Shi J, Chai K, Ying X and Zhou BP: The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets. 13:963–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M and Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 6:931–940. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Song L, Li Y, Zhou T and Jope RS: Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ. 15:1887–1900. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, et al: p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol. 11:694–704. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X and Liang S: Roles of microRNA on cancer cell metabolism. J Transl Med. 10:2282012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH and Wei YQ: Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 19:1177–1189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Mao Y, Zhao Y and He Y: DDX3X promotes the biogenesis of a subset of miRNAs and the potential roles they played in cancer development. Sci Rep. 6:327392016. View Article : Google Scholar : PubMed/NCBI | |
Valiente-Echeverría F, Hermoso MA and Soto-Rifo R: RNA helicase DDX3: At the crossroad of viral replication and antiviral immunity. Rev Med Virol. 25:286–299. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soulat D, Bürckstümmer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker T and Superti-Furga G: The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27:2135–2146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Fullam A, Brennan R and Schröder M: Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation. Mol Cell Biol. 33:2004–2015. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang R, Luo M, Li C, Wang HX, Huan CC, Qu YR, Liao Y and Mao X: (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget. 8:33197–33213. 2017.PubMed/NCBI | |
Xiang N, He M, Ishaq M, Gao Y, Song F, Guo L, Ma L, Sun G, Liu D, Guo D and Chen Y: The DEAD-box RNA helicase DDX3 interacts with NF-κB subunit p65 and suppresses p65-mediated transcription. PLoS One. 11:e01644712016. View Article : Google Scholar : PubMed/NCBI | |
Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, Sullivan TJ, Hess JM, Gimelbrant AA, Beroukhim R, et al: Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 49:10–16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, et al: Proteome-wide covalent ligand discovery in native biological systems. Nature. 534:570–574. 2016. View Article : Google Scholar : PubMed/NCBI | |
Radi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G and Botta M: Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorg Med Chem Lett. 22:2094–2098. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yedavalli VS, Zhang N, Cai H, Zhang P, Starost MF, Hosmane RS and Jeang KT: Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J Med Chem. 51:5043–5051. 2008. View Article : Google Scholar : PubMed/NCBI | |
Botlagunta M, Kollapalli B, Kakarla L, Gajarla SP, Gade SP, Dadi CL, Penumadu A and Javeed S: In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Bioinformation. 12:347–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, et al: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial. Lancet. 376:235–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schwertman P, Bekker-Jensen S and Mailand N: Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bol GM, Khan R, Heerma van Voss MR, Tantravedi S, Korz D, Kato Y and Raman V: PLGA nanoparticle formulation of RK-33: An RNA helicase inhibitor against DDX3. Cancer Chemother Pharmacol. 76:821–827. 2015. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O and Préat V: Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J Control Release. 133:11–17. 2009. View Article : Google Scholar : PubMed/NCBI |