Application of multifunctional nanomaterials in cancer vaccines (Review)
- Authors:
- Biao Fu
- Xiaomei Huang
- Jiaqi Deng
- Daijiao Gu
- Qibing Mei
- Mingming Deng
- Shixiao Tang
- Muhan Lü
-
Affiliations: Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China, School of Foreign Languages, Southwest Medical University, Luzhou 646000, P.R. China, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: January 10, 2018 https://doi.org/10.3892/or.2018.6206
- Pages: 893-900
This article is mentioned in:
Abstract
Qasim W and Thrasher AJ: Progress and prospects for engineered T cell therapies. Br J Haematol. 166:818–829. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ribas A, Butterfield LH, Glaspy JA and Economou JS: Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 21:2415–2432. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aly HA: Cancer therapy and vaccination. J Immunol Methods. 382:1–23. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lollini PL, Cavallo F, Nanni P and Forni G: Vaccines for tumour prevention. Nat Rev Cancer. 6:204–216. 2006. View Article : Google Scholar : PubMed/NCBI | |
Smith DM, Simon JK and Baker JR Jr: Applications of nanotechnology for immunology. Nat Rev Immunol. 13:592–605. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pashine A, Valiante NM and Ulmer JB: Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 11 Suppl:S63–S68. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B and Groettrup M: TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine. 26:1626–1637. 2008. View Article : Google Scholar : PubMed/NCBI | |
De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B and De Smedt SC: Particulate vaccines: On the quest for optimal delivery and immune response. Drug Discov Today. 16:569–582. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C and Irvine DJ: Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 507:519–522. 2014. View Article : Google Scholar : PubMed/NCBI | |
Palucka K and Banchereau J: Dendritic-cell-based therapeutic cancer vaccines. Immunity. 39:38–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scheerlinck JP and Greenwood DL: Virus-sized vaccine delivery systems. Drug Discov Today. 13:882–887. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goldberg MS: Immunoengineering: How nanotechnology can enhance cancer immunotherapy. Cell. 161:201–204. 2015. View Article : Google Scholar : PubMed/NCBI | |
Song YC, Cheng HY, Leng CH, Chiang SK, Lin CW, Chong P, Huang MH and Liu SJ: A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release. 173:158–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fischer NO, Rasley A, Corzett M, Hwang MH, Hoeprich PD and Blanchette CD: Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens. J Am Chem Soc. 135:2044–2047. 2013. View Article : Google Scholar : PubMed/NCBI | |
Standley SM, Mende I, Goh SL, Kwon YJ, Beaudette TT, Engleman EG and Fréchet JM: Incorporation of CpG oligonucleotide ligand into protein-loaded particle vaccines promotes antigen-specific CD8 T-cell immunity. Bioconjug Chem. 18:77–83. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fox CB, Sivananthan SJ, Duthie MS, Vergara J, Guderian JA, Moon E, Coblentz D, Reed SG and Carter D: A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. J Nanobiotechnology. 12:172014. View Article : Google Scholar : PubMed/NCBI | |
Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kündig T and Hengartner H: Antigen localisation regulates immune responses in a dose- and time-dependent fashion: A geographical view of immune reactivity. Immunol Rev. 156:199–209. 1997. View Article : Google Scholar : PubMed/NCBI | |
Reddy ST, Swartz MA and Hubbell JA: Targeting dendritic cells with biomaterials: Developing the next generation of vaccines. Trends Immunol. 27:573–579. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Han SJ and Huang L: Coating of mannan on LPD particles containing HPV E7 peptide significantly enhances immunity against HPV-positive tumor. Pharm Res. 21:1018–1025. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S and Zhang Z: Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 9:6918–6933. 2015. View Article : Google Scholar : PubMed/NCBI | |
Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O and Matzinger P: CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood. 109:5346–5354. 2007. View Article : Google Scholar : PubMed/NCBI | |
Delamarre L, Pack M, Chang H, Mellman I and Trombetta ES: Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 307:1630–1634. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM and Hanlon DJ: Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 117:78–88. 2006. View Article : Google Scholar : PubMed/NCBI | |
Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM and Edelson RL: Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomedicine. 9:5231–5246. 2014.PubMed/NCBI | |
Yuba E, Kono Y, Harada A, Yokoyama S, Arai M, Kubo K and Kono K: The application of pH-sensitive polymer-lipids to antigen delivery for cancer immunotherapy. Biomaterials. 34:5711–5721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mohla S: Tumor microenvironment. J Cell Biochem. 101:801–804. 2007. View Article : Google Scholar : PubMed/NCBI | |
Danhier F, Feron O and Préat V: To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 148:135–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO, Sica A, Mantovani A and Locati M: Macrophage activation and polarization. Front Biosci. 13:453–461. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C, Giannoudis A and Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 104:2224–2234. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, et al: Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 11:986–994. 2016. View Article : Google Scholar : PubMed/NCBI | |
Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM and Feder J: Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 84:1470–1478. 1989. View Article : Google Scholar : PubMed/NCBI | |
Meng H, Xing G, Sun B, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang X, et al: Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano. 4:2773–2783. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meng H, Xing G, Blanco E, Song Y, Zhao L, Sun B, Li X, Wang PC, Korotcov A, Li W, et al: Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine (Lond). 8:136–146. 2012. View Article : Google Scholar | |
Guo L, Yan DD, Yang D, Li Y, Wang X, Zalewski O, Yan B and Lu W: Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano. 8:5670–5681. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Chan C, Guo N, Han W, Weichselbaum RR and Lin W: Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc. 138:16686–16695. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Wang C, Zhan Z, He W, Cheng Z, Li Y and Liu Z: Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials. 35:8206–8214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berger M, Kreutz FT, Horst JL, Baldi AC and Koff WJ: Phase I study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. J Pharm Pharm Sci. 10:144–152. 2007.PubMed/NCBI | |
Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB and Wang XY: Therapeutic cancer vaccines: Past, present, and future. Adv Cancer Res. 119:421–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fields RC, Shimizu K and Mulé JJ: Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA. 95:pp. 9482–9487. 1998; View Article : Google Scholar : PubMed/NCBI | |
Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O'Connor DE and Zhang L: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14:2181–2188. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu SY, Wei W, Yue H, Ni DZ, Yue ZG, Wang S, Fu Q, Wang YQ, Ma GH and Su ZG: Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials. 34:8291–8300. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ueda Y, Itoh T, Fuji N, Harada S, Fujiki H, Shimizu K, Shiozaki A, Iwamoto A, Shimizu T, Mazda O, et al: Successful induction of clinically competent dendritic cells from granulocyte colony-stimulating factor-mobilized monocytes for cancer vaccine therapy. Cancer Immunol Immunother. 56:381–389. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han JA, Kang YJ, Shin C, Ra JS, Shin HH, Hong SY, Do Y and Kang S: Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine (Lond). 10:561–569. 2014. View Article : Google Scholar | |
Dobrovolskaia MA and McNeil SE: Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2:469–478. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zeng B, Liao AJ, Lu FG, Fang WY and Wang J: Inhibition of the growth of hepatocarcinoma xenograft in Balb/c mice induced by dendritic cells immunized with AFP cDNA fragement. Zhonghua Zhong Liu Za Zhi. 32:98–102. 2010.(In Chinese). PubMed/NCBI | |
Matsuo K, Ishii Y, Matsuo K, Yoshinaga T, Akashi M, Mukai Y, Yoshioka Y, Okada N and Nakagawa S: The utility of poly(γ-glutamic acid) nanoparticles as antigen delivery carriers in dendritic cell-based cancer immunotherapy. Biol Pharm Bull. 33:2003–2007. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang Q, Li K, Yin H and Zheng JN: Composite peptide-based vaccines for cancer immunotherapy (Review). Int J Mol Med. 35:17–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F and Domingo JC: Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm. 8:104–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S and Zhang Z: Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 228:26–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G and Galluzzi L: Trial watch: DNA vaccines for cancer therapy. OncoImmunology. 2:e238032013. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M, Chen X, Xiang R and Tan X: Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: Effect against breast cancer in mice. PLoS One. 8:e601902013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q and Fan C: Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 5:8783–8789. 2011. View Article : Google Scholar : PubMed/NCBI |