Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment (Review)
- Authors:
- Minghui Liu
- Hongyu Liu
- Jun Chen
-
Affiliations: Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China, Tianjin key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China - Published online on: January 19, 2018 https://doi.org/10.3892/or.2018.6221
- Pages: 901-911
This article is mentioned in:
Abstract
Minton K: Cancer immunotherapy: Cell cycle inhibitors boost tumour immunogenicity. Nat Rev Drug Dis. 16:6792017. View Article : Google Scholar | |
Hamilton E and Infante JR: Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 45:129–138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang S, Chen X, Zheng X, Yao Y, Lu G and Zhou J: Palbociclib, a selective CDK4/6 inhibitor, enhances the effect of selumetinib in RAS-driven non-small cell lung cancer. Cancer Lett. 408:130–137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bilgin B, Sendur MA, Şener Dede D, Akıncı MB and Yalçın B: A current and comprehensive review of cyclin-dependent kinase ınhibitors for the treatment of metastatic breast cancer. Curr Med Res Opin. 33:1559–1569. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Pan J: Dual cyclin-dependent kinase 4/6 inhibition by PD-0332991 induces apoptosis and senescence in oesophageal squamous cell carcinoma cells. Br J Pharmacol. 174:2427–2443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel P, Asbach B, Shteyn E, Gomez C, Coltoff A, Bhuyan S, Tyner AL, Wagner R and Blain SW: Brk/Protein tyrosine kinase 6 phosphorylates p27KIP1, regulating the activity of cyclin D-cyclin-dependent kinase 4. Mol Cell Biol. 35:1506–1522. 2015. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH and Wolgemuth DJ: Cyclin-dependent kinases: A family portrait. Nat Cell Biol. 11:1275–1276. 2009. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M: Cyclin-dependent kinases. Genome Biology. 15:1222014. View Article : Google Scholar : PubMed/NCBI | |
Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM and Morgan DO: Targets of the cyclin-dependent kinase Cdk1. Nature. 425:859–864. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baker SJ and Reddy EP: CDK4: A key player in the cell cycle, development, and cancer. Genes Cancer. 3:658–669. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shah K and Lahiri DK: Cdk5 activity in the brain-multiple paths of regulation. J Cell Sci. 127:2391–2400. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pinhero R and Yankulov K: Expression and purification of recombinant CDKs: CDK7, CDK8, and CDK9. Methods Mol Biol. 1336:13–28. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galbraith MD, Donner AJ and Espinosa JM: CDK8: A positive regulator of transcription. Transcription. 1:4–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krystof V, Baumli S and Fürst R: Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Curr Pharm Des. 18:2883–2890. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu D, Mayeda A, Trembley JH, Lahti JM and Kidd VJ: CDK11 complexes promote pre-mRNA splicing. J Biol Chem. 278:8623–8629. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Huang S, Peng H, Liu M, Zhao J, Shao Z and Wu J: Critical role of CDK11(p58) in human breast cancer growth and angiogenesis. BMC Cancer. 15:7012015. View Article : Google Scholar : PubMed/NCBI | |
Bajić VP, Su B, Lee HG, Kudo W, Siedlak SL, Zivković L, Spremo-Potparević B, Djelic N, Milicevic Z, Singh AK, et al: Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cell Mol Biol Lett. 16:359–372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Han C, Li D, Yu Z, Li F, Li F, An Q, Bai H, Zhang X, Duan Z and Kan Q: Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep. 5:104332015. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M and Barbacid M: Mammalian cyclin-dependent kinases. Trends Biochem Sci. 30:630–641. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shapiro GI: Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 24:1770–1783. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakurikar N and Eastman A: Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle. 15:1184–1188. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: G1 phase progression: Cycling on cue. Cell. 79:551–555. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang J, Gao W, Zhang L, Pan Y, Zhang S and Wang Y: Insights on structural characteristics and ligand binding mechanisms of CDK2. Int J Mol Sci. 16:9314–9340. 2015. View Article : Google Scholar : PubMed/NCBI | |
Flores O, Wang Z, Knudsen KE and Burnstein KL: Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology. 151:896–908. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ali S, Heathcote DA, Kroll SH, Jogalekar AS, Scheiper B, Pate H, Brackow J, Siwicka A, Fuchter MJ, Periyasamy M, et al: The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res. 69:6208–6215. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kawana H, Tamaru J, Tanaka T, Hirai A, Saito Y, Kitagawa M, Mikata A, Harigaya K and Kuriyama T: Role of p27Kip1 and cyclin-dependent kinase 2 in the proliferation of non-small cell lung cancer. Am J Pathol. 153:505–513. 1998. View Article : Google Scholar : PubMed/NCBI | |
Morgan DO: Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 13:261–291. 1997. View Article : Google Scholar : PubMed/NCBI | |
Clark AS, Karasic TB, DeMichele A, Vaughn DJ, O'Hara M, Perini R, Zhang P, Lal P, Feldman M, Gallagher M and O'Dwyer PJ: Palbociclib (PD0332991) - a selective and potent cyclin-dependent kinase inhibitor: A review of pharmacodynamics and clinical development. JAMA Oncol. 2:253–260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dean JL, McClendon AK and Knudsen ES: Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J Biol Chem. 287:29075–29087. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin SJ, et al: Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 19:6173–6182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X, et al: Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature. 510:547–551. 2014. View Article : Google Scholar : PubMed/NCBI | |
Weijts BGMW, Westendorp B, Hien BT, Martínez-López LM, Zijp M, Thurlings I, Thomas RE, Schulte-Merker S, Bakker WJ and de Bruin A: Atypical E2Fs inhibit tumor angiogenesis. Oncogene. Sep 18–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Wirt SE and Sage J: p107 in the public eye: An Rb under study and more. Cell Div. 5:92010. View Article : Google Scholar : PubMed/NCBI | |
Sadasivam S and DeCaprio JA: The DREAM complex: Master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 13:585–595. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N, Harlow E and Jacks T: Targeted disruption of p107: Functional overlap between p107 and Rb. Genes Dev. 10:1621–1632. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, Beach D, Weinberg RA and Jacks T: Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10:1633–1644. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Nar R, Fan AX, Aryan M, Hossain MA, Gurumurthy A, Wassel PC, Tang M, Lu J, Strouboulis J and Bungert J: Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci. J Cell Biochem. 119:712–722. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, et al: Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest. 127:830–842. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conklin JF and Sage J: Keeping an eye on retinoblastoma control of human embryonic stem cells. J Cell Biochem. 108:1023–1030. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dyson N: The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lukas J, Petersen BO, Holm K, Bartek J and Helin K: Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 16:1047–1057. 1996. View Article : Google Scholar : PubMed/NCBI | |
Asano M, Nevins JR and Wharton RP: Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10:1422–1432. 1996. View Article : Google Scholar : PubMed/NCBI | |
DeGregori J, Leone G, Ohtani K, Miron A and Nevins JR: E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev. 9:2873–2887. 1995. View Article : Google Scholar : PubMed/NCBI | |
Allen KE, La Luna de S, Kerkhoven RM, Bernards R and La Thangue NB: Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors. J Cell Sci. 110:2819–2831. 1997.PubMed/NCBI | |
Müller H, Moroni MC, Vigo E, Petersen BO, Bartek J and Helin K: Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol. 17:5508–5520. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Zheng S and Yu Q: The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol. 41:2389–2397. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, Cleghorn W, Chen HZ, Kornacker K, Liu CG, et al: Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 14:62–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Westendorp B, Mokry M, Groot Koerkamp MJ, Holstege FC, Cuppen E and de Bruin A: E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 40:3511–3523. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lundberg AS and Weinberg RA: Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol. 18:753–761. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ezhevsky SA, Ho A, Becker-Hapak M, Davis PK and Dowdy SF: Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol. 21:4773–4784. 2001. View Article : Google Scholar : PubMed/NCBI | |
Harbour JW, Luo RX, Dei Santi A, Postigo AA and Dean DC: Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 98:859–869. 1999. View Article : Google Scholar : PubMed/NCBI | |
van den Heuvel S and Harlow E: Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 262:2050–2054. 1993. View Article : Google Scholar : PubMed/NCBI | |
Garber K: The cancer drug that almost wasn't. Science. 345:865–867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dolman ME, Poon E, Ebus ME, den Hartog IJ, van Noesel CJ, Jamin Y, Hallsworth A, Robinson SP, Petrie K, Sparidans RW, et al: Cyclin-dependent kinase inhibitor AT7519 as a potential drug for MYCN-dependent neuroblastoma. Clin Cancer Res. 21:5100–5109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rigas AC, Robson CN and Curtin NJ: Therapeutic potential of CDK inhibitor NU2058 in androgen-independent prostate cancer. Oncogene. 26:7611–7619. 2007. View Article : Google Scholar : PubMed/NCBI | |
Joshi KS, Rathos MJ, Mahajan P, Wagh V, Shenoy S, Bhatia D, Chile S, Sivakumar M, Maier A, Fiebig HH and Sharma S: P276-00, a novel cyclin-dependent inhibitor induces G1-G2 arrest, shows antitumor activity on cisplatin-resistant cells and significant in vivo efficacy in tumor models. Mol Cancer Ther. 6:926–934. 2007. View Article : Google Scholar : PubMed/NCBI | |
Joshi KS, Rathos MJ, Joshi RD, Sivakumar M, Mascarenhas M, Kamble S, Lal B and Sharma S: In vitro antitumor properties of a novel cyclin-dependent kinase inhibitor, P276-00. Mol Cancer Ther. 6:918–925. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giordano A, Rossi A, Romano G and Bagella L: Tumor suppressor pRb2/p130 gene and its derived product Spa310 spacer domain as perspective candidates for cancer therapy. J Cell Physiol. 213:403–406. 2007. View Article : Google Scholar : PubMed/NCBI | |
De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M and Kim SH: Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem. 243:518–526. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lee B, Sandhu S and McArthur G: Cell cycle control as a promising target in melanoma. Curr Opin Oncol. 27:141–150. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dange Y, Bhinge S and Salunkhe V: Optimization and validation of RP-HPLC method for simultaneous estimation of palbociclib and letrozole. Toxicol Mech Methods 1–8. 2017. | |
Guha M: Cyclin-dependent kinase inhibitors move into Phase III. Nat Rev Drug Discov. 11:892–894. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cardoso F, Bischoff J, Brain E, Zotano ÁG, Lück HJ, Tjan-Heijnen VC, Tanner M and Aapro M: A review of the treatment of endocrine responsive metastatic breast cancer in postmenopausal women. Cancer Treat Rev. 39:457–465. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sammons SL, Topping DL and Blackwell KL: HR+, HER2 advanced breast cancer and CDK4/6 inhibitors: mode of action, clinical activity, and safety profiles. Current Cancer Drug Targets. 17:637–649. 2017. View Article : Google Scholar : PubMed/NCBI | |
Costa R, Costa RB, Talamantes SM, Helenowski I, Peterson J, Kaplan J, Carneiro BA, Giles FJ and Gradishar WJ: Meta-analysis of selected toxicity endpoints of CDK4/6 inhibitors: Palbociclib and ribociclib. Breast. 35:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iwata H, Im SA, Masuda N, Im YH, Inoue K, Rai Y, Nakamura R, Kim JH, Hoffman JT, Zhang K, et al: PALOMA-3: Phase III trial of fulvestrant with or without palbociclib in premenopausal and postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer that progressed on prior endocrine therapy-safety and efficacy in Asian patients. J Global Oncol. 3:289–303. 2017. View Article : Google Scholar | |
Loibl S, Turner NC, Ro J, Cristofanilli M, Iwata H, Im SA, Masuda N, Loi S, André F, Harbeck N, et al: Palbociclib combined with fulvestrant in premenopausal women with advanced breast cancer and prior progression on endocrine therapy: PALOMA-3 Results. Oncologist. 22:1028–1038. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schwartz GK, LoRusso PM, Dickson MA, Randolph SS, Shaik MN, Wilner KD, Courtney R and O'Dwyer PJ: Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br J Cancer. 104:1862–1868. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fribbens C, OLeary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M, Cristofanilli M, Andre F, Loi S, Loibl S, et al: Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol. 34:2961–2968. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gelsomino L, Gu G, Rechoum Y, Beyer AR, Pejerrey SM, Tsimelzon A, Wang T, Huffman K, Ludlow A, Andò S and Fuqua SAW: ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling. Breast Cancer Res Treat. 157:253–265. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kuehl WM and Bergsagel PL: Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 122:3456–3463. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ocio EM, Mitsiades CS, Orlowski RZ and Anderson KC: Future agents and treatment directions in multiple myeloma. Expert Rev Hematol. 7:127–141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Castelli R, Gualtierotti R, Orofino N, Losurdo A, Gandolfi S and Cugno M: Current and emerging treatment options for patients with relapsed myeloma. Clin Med Insights Oncol. 7:209–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Niesvizky R, Badros AZ, Costa LJ, Ely SA, Singhal SB, Stadtmauer EA, Haideri NA, Yacoub A, Hess G, Lentzsch S, et al: Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. Leuk Lymphoma. 56:3320–3328. 2015. View Article : Google Scholar : PubMed/NCBI | |
Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, et al: A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 348:2609–2617. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perumal D, Kuo PY, Leshchenko VV, Jiang Z, Divakar SK, Cho HJ, Chari A, Brody J, Reddy MV, Zhang W, et al: Dual targeting of CDK4 and ARK5 using a novel kinase inhibitor ON123300 exerts potent anticancer activity against multiple myeloma. Cancer Res. 76:1225–1236. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Ulbrich J, Müller J, Wüstefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 483:608–612. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, et al: Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 31:3327–3334. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Xu S, Wang Y, Li Y, Li Y, Zhang H, Liu H and Chen J: PD 0332991, a selective cyclin D kinase 4/6 inhibitor, sensitizes lung cancer cells to treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Oncotarget. 7:84951–84964. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A, Lewis TA, Maglathin RL, Tolliday N and Jacks T: Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA. 108:pp. 8773–8778. 2011; View Article : Google Scholar : PubMed/NCBI | |
Montagut C and Settleman J: Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 283:125–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tao Z, Le Blanc JM, Wang C, Zhan T, Zhuang H, Wang P, Yuan Z and Lu B: Coadministration of trametinib and palbociclib radiosensitizes KRAS-mutant non-small cell lung cancers in vitro and in vivo. Clin Cancer Res. 22:122–133. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization of squamous cell lung cancers. Nature. 489:519–525. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chikara S, Lindsey K, Dhillon H, Mamidi S, Kittilson J, Christofidou-Solomidou M and Reindl KM: Enterolactone induces G1-phase cell cycle arrest in nonsmall cell lung cancer cells by downregulating cyclins and cyclin-dependent kinases. Nutr Cancer. 69:652–662. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen DH and Zhang XS: Targeted therapy: Resistance and re-sensitization. Chin J Cancer. 34:496–501. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JE, Park HS, Lee D, Yoo G, Kim T, Jeon H, Yeo MK, Lee CS, Moon JY, Jung SS, et al: Hippo pathway effector YAP inhibition restores the sensitivity of EGFR-TKI in lung adenocarcinoma having primary or acquired EGFR-TKI resistance. Biochem Biophys Res Commun. 474:154–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, et al: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4:1046–1061. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luque-Cabal M, García-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L and Palacio-Vázquez I: Mechanisms behind the resistance to trastuzumab in her2-amplified breast cancer and strategies to overcome it. Clin Med Insights Oncol. 10 Suppl 1:S21–S30. 2016. | |
Teh JL, Purwin TJ, Greenawalt EJ, Chervoneva I, Goldberg A, Davies MA and Aplin AE: An in vivo reporter to quantitatively and temporally analyze the effects of CDK4/6 inhibitor-based therapies in melanoma. Cancer Res. 76:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, Dastur A, Amzallag A, Ramaswamy S, Tesar B, et al: Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 511:616–620. 2014. View Article : Google Scholar : PubMed/NCBI |