Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review)
- Authors:
- Kalliopi I. Pappa
- Georgia Kontostathi
- Vasiliki Lygirou
- Jerome Zoidakis
- Nicholas P. Anagnou
-
Affiliations: First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens 11528, Greece, Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece - Published online on: February 9, 2018 https://doi.org/10.3892/or.2018.6257
- Pages: 1547-1554
This article is mentioned in:
Abstract
Hoory T, Monie A, Gravitt P and Wu TC: Molecular epidemiology of human papillomavirus. J Formos Med Assoc. 107:198–217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Muñoz N, Bosch FX, Castellsagué X, Díaz M, de Sanjose S, Hammouda D, Shah KV and Meijer CJ: Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer. 111:278–285. 2004. View Article : Google Scholar : PubMed/NCBI | |
Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR and Stanley MA: The biology and life-cycle of human papillomaviruses. Vaccine. 30 Suppl 5:F55–F70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stanley MA: Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 25:215–222. 2012. View Article : Google Scholar : PubMed/NCBI | |
McBride AA: Replication and partitioning of papillomavirus genomes. Adv Virus Res. 72:155–205. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dueñas-González A and Campbell S: Global strategies for the treatment of early-stage and advanced cervical cancer. Curr Opin Obstet Gynecol. 28:11–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, Stanley MA and Franceschi S: Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2:160862016. View Article : Google Scholar : PubMed/NCBI | |
Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU and Keller PM: The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem. 274:5810–5822. 1999. View Article : Google Scholar : PubMed/NCBI | |
Evander M, Frazer IH, Payne E, Qi YM, Hengst K and McMillan NA: Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol. 71:2449–2456. 1997.PubMed/NCBI | |
Cardone G, Moyer AL, Cheng N, Thompson CD, Dvoretzky I, Lowy DR, Schiller JT, Steven AC, Buck CB and Trus BL: Maturation of the human papillomavirus 16 capsid. MBio. 5:e01104–e01114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ryndock EJ, Conway MJ, Alam S, Gul S, Murad S, Christensen ND and Meyers C: Roles for human papillomavirus type 16 l1 cysteine residues 161, 229, and 379 in genome encapsidation and capsid stability. PLoS One. 9:e994882014. View Article : Google Scholar : PubMed/NCBI | |
Joshi H, Cheluvaraja S, Somogyi E, Brown DR and Ortoleva P: A molecular dynamics study of loop fluctuation in human papillomavirus type 16 virus-like particles: A possible indicator of immunogenicity. Vaccine. 29:9423–9430. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bishop B, Dasgupta J, Klein M, Garcea RL, Christensen ND, Zhao R and Chen XS: Crystal structures of four types of human papillomavirus L1 capsid proteins: Understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem. 282:31803–31811. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mistry N, Wibom C and Evander M: Cutaneous and mucosal human papillomaviruses differ in net surface charge, potential impact on tropism. Virol J. 5:1182008. View Article : Google Scholar : PubMed/NCBI | |
Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT and Trus BL: Arrangement of L2 within the papillomavirus capsid. J Virol. 82:5190–5197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schneider MA, Spoden GA, Florin L and Lambert C: Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol. 13:32–46. 2011. View Article : Google Scholar : PubMed/NCBI | |
Darshan MS, Lucchi J, Harding E and Moroianu J: The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol. 78:12179–12188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lowe J, Panda D, Rose S, Jensen T, Hughes WA, Tso FY and Angeletti PC: Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virol J. 5:1502008. View Article : Google Scholar : PubMed/NCBI | |
Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, Schelhaas M and Kast WM: The evolving field of human papillomavirus receptor research: A review of binding and entry. J Virol. 87:6062–6072. 2013. View Article : Google Scholar : PubMed/NCBI | |
Woodham AW, Da Silva DM, Skeate JG, Raff AB, Ambroso MR, Brand HE, Isas JM, Langen R and Kast WM: The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection. PLoS One. 7:e435192012. View Article : Google Scholar : PubMed/NCBI | |
Ishii Y, Nakahara T, Kataoka M, Kusumoto-Matsuo R, Mori S, Takeuchi T and Kukimoto I: Identification of TRAPPC8 as a host factor required for human papillomavirus cell entry. PLoS One. 8:e802972013. View Article : Google Scholar : PubMed/NCBI | |
Lehoux M, Fradet-Turcotte A, Lussier-Price M, Omichinski JG and Archambault J: Inhibition of human papillomavirus DNA replication by an E1-derived p80/UAF1-binding peptide. J Virol. 86:3486–3500. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peter M: Howley DRL: Papillomaviruses. Journal II. 1–2354. 2007. | |
Morin G, Fradet-Turcotte A, Di Lello P, Bergeron-Labrecque F, Omichinski JG and Archambault J: A conserved amphipathic helix in the N-terminal regulatory region of the papillomavirus E1 helicase is required for efficient viral DNA replication. J Virol. 85:5287–5300. 2011. View Article : Google Scholar : PubMed/NCBI | |
Auster AS and Joshua-Tor L: The DNA-binding domain of human papillomavirus type 18 E1. Crystal structure, dimerization, and DNA binding. J Biol Chem. 279:3733–3742. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bellanger S, Tan CL, Xue YZ, Teissier S and Thierry F: Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res. 1:373–389. 2011.PubMed/NCBI | |
Dell G, Wilkinson KW, Tranter R, Parish J, Leo Brady R and Gaston K: Comparison of the structure and DNA-binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus. J Mol Biol. 334:979–991. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Coulombe R, Cameron DR, Thauvette L, Massariol MJ, Amon LM, Fink D, Titolo S, Welchner E, Yoakim C, et al: Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J Biol Chem. 279:6976–6985. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brown C, Campos-León K, Strickland M, Williams C, Fairweather V, Brady RL, Crump MP and Gaston K: Protein flexibility directs DNA recognition by the papillomavirus E2 proteins. Nucleic Acids Res. 39:2969–2980. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nakahara T, Peh WL, Doorbar J, Lee D and Lambert PF: Human papillomavirus type 16 E1circumflexE4 contributes to multiple facets of the papillomavirus life cycle. J Virol. 79:13150–13165. 2005. View Article : Google Scholar : PubMed/NCBI | |
Doorbar J: The E4 protein; structure, function and patterns of expression. Virology. 445:80–98. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davy C, McIntosh P, Jackson DJ, Sorathia R, Miell M, Wang Q, Khan J, Soneji Y and Doorbar J: A novel interaction between the human papillomavirus type 16 E2 and E1^E4 proteins leads to stabilization of E2. Virology. 394:266–275. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JB and Doorbar J: Identification of a G2 arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol. 76:9806–9818. 2002. View Article : Google Scholar : PubMed/NCBI | |
Roberts S, Ashmole I, Rookes SM and Gallimore PH: Mutational analysis of the human papillomavirus type 16 E1^E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. J Virol. 71:3554–3562. 1997.PubMed/NCBI | |
McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q, Jackson DJ, Griffin HM and Doorbar J: E1^E4-mediated keratin phosphorylation and ubiquitylation: A mechanism for keratin depletion in HPV16-infected epithelium. J Cell Sci. 123:2810–2822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang DH, Wildeman AG and Sharom FJ: Overexpression, purification, and structural analysis of the hydrophobic E5 protein from human papillomavirus type 16. Protein Expr Purif. 30:1–10. 2003. View Article : Google Scholar : PubMed/NCBI | |
Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS and Borzacchiello G: Papillomavirus E5: The smallest oncoprotein with many functions. Mol Cancer. 10:1402011. View Article : Google Scholar : PubMed/NCBI | |
Ashrafi GH, Haghshenas M, Marchetti B and Campo MS: E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer. 119:2105–2112. 2006. View Article : Google Scholar : PubMed/NCBI | |
Disbrow GL, Hanover JA and Schlegel R: Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol. 79:5839–5846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stoler MH, Rhodes CR, Whitbeck A, Wolinsky SM, Chow LT and Broker TR: Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol. 23:117–128. 1992. View Article : Google Scholar : PubMed/NCBI | |
Kabsch K and Alonso A: The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol. 76:12162–12172. 2002. View Article : Google Scholar : PubMed/NCBI | |
Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, Sgarbanti M, Battistini A, Liberto MC and Focà A: Human papillomavirus type 16 E5 protein induces expression of beta interferon through interferon regulatory factor 1 in human keratinocytes. J Virol. 85:5070–5080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suprynowicz FA, Disbrow GL, Simic V and Schlegel R: Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology. 332:102–113. 2005. View Article : Google Scholar : PubMed/NCBI | |
Krawczyk E, Suprynowicz FA, Liu X, Dai Y, Hartmann DP, Hanover J and Schlegel R: Koilocytosis: A cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. Am J Pathol. 173:682–688. 2008. View Article : Google Scholar : PubMed/NCBI | |
Krawczyk E, Suprynowicz FA, Hebert JD, Kamonjoh CM and Schlegel R: The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol. 85:10968–10975. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kotnik Halavaty K, Regan J, Mehta K and Laimins L: Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation. Virology 452–453. 1–230. 2014. | |
Barbaresi S, Cortese MS, Quinn J, Ashrafi GH, Graham SV and Campo MS: Effects of human papillomavirus type 16 E5 deletion mutants on epithelial morphology: Functional characterization of each transmembrane domain. J Gen Virol. 91:521–530. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nominé Y, Charbonnier S, Ristriani T, Stier G, Masson M, Cavusoglu N, Van Dorsselaer A, Weiss E, Kieffer B and Travé G: Domain substructure of HPV E6 oncoprotein: Biophysical characterization of the E6 C-terminal DNA-binding domain. Biochemistry. 42:4909–4917. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zanier K, Ould M'hamed ould Sidi A, Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, Kieffer B and Travé G: Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure. 20:604–617. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Henry GD, Hegde RS and Baleja JD: Solution structure of the hDlg/SAP97 PDZ2 domain and its mechanism of interaction with HPV-18 papillomavirus E6 protein. Biochemistry. 46:10864–10874. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zanier K, Stutz C, Kintscher S, Reinz E, Sehr P, Bulkescher J, Hoppe-Seyler K, Travé G and Hoppe-Seyler F: The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One. 9:e1125142014. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, et al: Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 529:541–545. 2016. View Article : Google Scholar : PubMed/NCBI | |
Manzo-Merino J, Massimi P, Lizano M and Banks L: The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8. Virology 450–451. 1–152. 2014. | |
Liu S, Tian Y, Greenaway FT and Sun MZ: A C-terminal hydrophobic, solvent-protected core and a flexible N-terminus are potentially required for human papillomavirus 18 E7 protein functionality. Biochimie. 92:901–908. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Clements A, Zhao K and Marmorstein R: Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem. 281:578–586. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chemes LB, Camporeale G, Sánchez IE, de Prat-Gay G and Alonso LG: Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry. 53:1680–1696. 2014. View Article : Google Scholar : PubMed/NCBI | |
Onder Z and Moroianu J: Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins. Virology. 449:150–162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calçada EO, Felli IC, Hošek T and Pierattelli R: The heterogeneous structural behavior of E7 from HPV16 revealed by NMR spectroscopy. ChemBioChem. 14:1876–1882. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Jena L, Sahoo M, Kakde M, Daf S and Varma AK: In silico docking to explicate interface between plant-originated inhibitors and E6 oncogenic protein of highly threatening human papillomavirus 18. Genomics Inform. 13:60–67. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rietz A, Petrov DP, Bartolowits M, DeSmet M, Davisson VJ and Androphy EJ: Molecular probing of the HPV-16 E6 protein alpha helix binding groove with small molecule inhibitors. PLoS One. 11:e01498452016. View Article : Google Scholar : PubMed/NCBI | |
Stutz C, Reinz E, Honegger A, Bulkescher J, Schweizer J, Zanier K, Travé G, Lohrey C, Hoppe-Seyler K and Hoppe-Seyler F: Intracellular analysis of the interaction between the human papillomavirus type 16 E6 oncoprotein and inhibitory peptides. PLoS One. 10:e01323392015. View Article : Google Scholar : PubMed/NCBI | |
Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Melvin J, Troutman S, Kissil JL, Huryn DM and Marmorstein R: Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. Chem Biol. 19:518–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tian YS, Kawashita N, Arai Y, Okamoto K and Takagi T: Pharmacophore modeling and molecular docking studies of potential inhibitors to E6 PBM-PDZ from human papilloma virus (HPV). Bioinformation. 11:401–406. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yuan CH, Filippova M, Krstenansky JL and Duerksen-Hughes PJ: Flavonol and imidazole derivatives block HPV16 E6 activities and reactivate apoptotic pathways in HPV+ cells. Cell Death Dis. 7:20602016. View Article : Google Scholar : PubMed/NCBI | |
Malecka KA, Fera D, Schultz DC, Hodawadekar S, Reichman M, Donover PS, Murphy ME and Marmorstein R: Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem Biol. 9:1603–1612. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kontostathi G, Zoidakis J, Makridakis M, Lygirou V, Mermelekas G, Papadopoulos T, Vougas K, Vlamis-Gardikas A, Drakakis P, Loutradis D, et al: Cervical cancer cell line secretome analysis highlights the role of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2 and NRF2 on cervical cancer carcinogenesis. BioMed Res Int. 2017:41807032017. View Article : Google Scholar : PubMed/NCBI | |
Pappa KI, Lygirou V, Kontostathi G, Zoidakis J, Makridakis M, Vougas K, Daskalakis G, Polyzos A and Anagnou NP: Proteomic analysis of normal and cancer cervical cell lines reveals deregulation of cytoskeleton-associated proteins. Cancer Genomics Proteomics. 14:253–266. 2017. View Article : Google Scholar : PubMed/NCBI |