Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review)
- Authors:
- Taxiarchis Konstantinos Nikolouzakis
- Loukia Vassilopoulou
- Persefoni Fragkiadaki
- Theodoros Mariolis Sapsakos
- Georgios Z. Papadakis
- Demetrios A. Spandidos
- Aristides M. Tsatsakis
- John Tsiaoussis
-
Affiliations: Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece, Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece, Laboratory of Anatomy and Histology, Nursing School, National and Kapodistrian University of Athens, 11527 Athens, Greece, Foundation for Research and Technology Hellas (FORTH), Institute of Computer Sciences (ICS), Computational Biomedicine Laboratory (CBML), 71003 Heraklion, Crete, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece, Laboratory of Anatomy‑Histology‑Embryology, Medical School, University of Crete, 71110 Heraklion, Greece - Published online on: March 21, 2018 https://doi.org/10.3892/or.2018.6330
- Pages: 2455-2472
-
Copyright: © Nikolouzakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar | |
Haggar FA and Boushey RP: Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 22:191–197. 2009. View Article : Google Scholar | |
Dušek L, Mužík J, Malúšková D and Šnajdrová L: Epidemiology of colorectal cancer: International comparisonInstitute of Biostatistics and Analyses. Masaryk University; Brno, Czech Republic: | |
Bardhan K and Liu K: Epigenetics and colorectal cancer pathogenesis. Cancers (Basel). 5:676–713. 2013. View Article : Google Scholar | |
Tsiaoussis J, Vassilopoulou L, Nikolouzakis T, Rakitskii VN, Vakonaki E, Fragkiadaki P, Stivaktakis P and Tsatsakis AM: Biomolecular profile of colorectal cancer - the role of telomerase as a potent biomarker. Farmacia. 65:643–659. 2017. | |
Souglakos J, Philips J, Wang R, Marwah S, Silver M, Tzardi M, Silver J, Ogino S, Hooshmand S, Kwak E, et al: Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer. 101:465–472. 2009. View Article : Google Scholar | |
Migliore L, Migheli F, Spisni R and Coppedè F: Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011:7923622011. View Article : Google Scholar | |
Gonzalez-Pons M and Cruz-Correa M: Colorectal cancer biomarkers: Where are we now? BioMed Res Int. 2015:1490142015. View Article : Google Scholar | |
Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B and Starling N: Colorectal cancer. Lancet. 375:1030–1047. 2010. View Article : Google Scholar | |
Kuipers EJ, Rösch T and Bretthauer M: Colorectal cancer screening - optimizing current strategies and new directions. Nat Rev Clin Oncol. 10:130–142. 2013. View Article : Google Scholar | |
Labianca R and Merelli B: Screening and diagnosis for colorectal cancer: Present and future. Tumori. 96:889–901. 2010. View Article : Google Scholar | |
Mahmud A, Poon R and Jonker D: PET imaging in anal canal cancer: A systematic review and meta-analysis. Br J Radiol. 90:201703702017. View Article : Google Scholar | |
Paspulati RM and Gupta A: PET/MR imaging in cancers of the gastrointestinal tract. PET Clin. 11:403–423. 2016. View Article : Google Scholar | |
Bond JH: Fecal occult blood test screening for colorectal cancer. Gastrointest Endosc Clin N Am. 12:11–21. 2002. View Article : Google Scholar | |
Siegel R, Desantis C and Jemal A: Colorectal cancer statistics, 2014. CA Cancer J Clin. 64:104–117. 2014. View Article : Google Scholar | |
Ahlquist DA: Molecular detection of colorectal neoplasia. Gastroenterology. 138:2127–2139. 2010. View Article : Google Scholar | |
Shah R, Jones E, Vidart V, Kuppen PJ, Conti JA and Francis NK: Biomarkers for early detection of colorectal cancer and polyps: Systematic review. Cancer Epidemiol Biomarkers Prev. 23:1712–1728. 2014. View Article : Google Scholar | |
Alix-Panabières C and Pantel K: Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6:479–491. 2016. View Article : Google Scholar | |
Shastri YM, Loitsch S, Hoepffner N, Povse N, Hanisch E, Rösch W, Mössner J and Stein JM: Comparison of an established simple office-based immunological FOBT with fecal tumor pyruvate kinase type M2 (M2-PK) for colorectal cancer screening: Prospective multicenter study. Am J Gastroenterol. 103:1496–1504. 2008. View Article : Google Scholar | |
Takai T, Kanaoka S, Yoshida K, Hamaya Y, Ikuma M, Miura N, Sugimura H, Kajimura M and Hishida A: Fecal cyclooxygenase 2 plus matrix metalloproteinase 7 mRNA assays as a marker for colorectal cancer screening. Cancer Epidemiol Biomarkers Prev. 18:1888–1893. 2009. View Article : Google Scholar | |
Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar | |
Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, Wong YN, Chan FK, Yu J and Sung JJ: Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 61:739–745. 2012. View Article : Google Scholar | |
Pan C, Yan X, Li H, Huang L, Yin M, Yang Y, Gao R, Hong L, Ma Y, Shi C, et al: Systematic literature review and clinical validation of circulating microRNAs as diagnostic biomarkers for colorectal cancer. Oncotarget. 8:68317–68328. 2017. View Article : Google Scholar | |
Kanaan Z, Roberts H, Eichenberger MR, Billeter A, Ocheretner G, Pan J, Rai SN, Jorden J, Williford A and Galandiuk S: A plasma microRNA panel for detection of colorectal adenomas: A step toward more precise screening for colorectal cancer. Ann Surg. 258:400–408. 2013. View Article : Google Scholar | |
Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, Ahlquist DA and Berger BM: Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 370:1287–1297. 2014. View Article : Google Scholar | |
Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA and Ross ME: Colorectal Cancer Study Group: Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med. 351:2704–2714. 2004. View Article : Google Scholar | |
Bayrak R, Yenidünya S and Haltas H: Cytokeratin 7 and cytokeratin 20 expression in colorectal adenocarcinomas. Pathol Res Pract. 207:156–160. 2011. View Article : Google Scholar | |
Righi A, Betts CM, Marchetti C, Marucci G, Montebugnoli L, Prati C, Eusebi LH, Muzzi L, Ragazzini T and Foschini MP: Merkel cells in the oral mucosa. Int J Surg Pathol. 14:206–211. 2006. View Article : Google Scholar | |
Stenling R, Lindberg J, Rutegård J and Palmqvist R: Altered expression of CK7 and CK20 in preneoplastic and neoplastic lesions in ulcerative colitis. APMIS. 115:1219–1226. 2007. View Article : Google Scholar | |
Radović S, Selak I, Babić M, Vukobrat-Bijedić Z and Knezević Z: Anti-cytokeratin 7: A positive marker for epithelial dysplasia in flat bowel mucosa. Bosn J Basic Med Sci. 4:24–30. 2004. | |
Gurzu S and Jung I: Aberrant pattern of the cytokeratin 7/cytokeratin 20 immunophenotype in colorectal adenocarcinomas with BRAF mutations. Pathol Res Pract. 208:163–166. 2012. View Article : Google Scholar | |
Chu P, Wu E and Weiss LM: Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: A survey of 435 cases. Mod Pathol. 13:962–972. 2000. View Article : Google Scholar | |
Miettinen M, Nobel MP, Tuma BT and Kovatich AJ: Keratin 17: Immunohistochemical mapping of its distribution in human epithelial tumors and its potential applications. Appl Immunohistochem. 5:152–159. 1997. View Article : Google Scholar | |
Hernandez BY, Frierson HF Jr, Moskaluk CA, Li YJ, Clegg L, Cote TR, McCusker ME, Hankey BF, Edwards BK and Goodman MT: CK20 and CK7 protein expression in colorectal cancer: Demonstration of the utility of a population-based tissue microarray. Hum Pathol. 36:275–281. 2005. View Article : Google Scholar | |
Silberg DG, Swain GP, Suh ER and Traber PG: Cdx1 and cdx2 expression during intestinal development. Gastroenterology. 119:961–971. 2000. View Article : Google Scholar | |
Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM and Frierson HF Jr: Cdx2 protein expression in normal and malignant human tissues: An immunohistochemical survey using tissue microarrays. Mod Pathol. 16:913–919. 2003. View Article : Google Scholar | |
Werling RW, Yaziji H, Bacchi CE and Gown AM: CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: An immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 27:303–310. 2003. View Article : Google Scholar | |
Zheng J, He S, Qi J, Wang X, Yu J, Wu Y, Gao Q, Wang K and Sun X: Targeted CDX2 expression inhibits aggressive phenotypes of colon cancer cells in vitro and in vivo. Int J Oncol. 51:478–488. 2017. View Article : Google Scholar | |
Bretscher A and Weber K: Villin: The major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci USA. 76:2321–2325. 1979. View Article : Google Scholar | |
Patnaik S, George SP, Pham E, Roy S, Singh K, Mariadason JM and Khurana S: By moonlighting in the nucleus, villin regulates epithelial plasticity. Mol Biol Cell. 27:535–548. 2016. View Article : Google Scholar | |
Kuroda N and Yorita K: Colon cancer with micropapillary carcinoma component: A clinopathologic study of 9 cases. Pol J Pathol. 68:102–108. 2017. View Article : Google Scholar | |
Bacchi CE and Gown AM: Distribution and pattern of expression of villin, a gastrointestinal-associated cytoskeletal protein, in human carcinomas: A study employing paraffin-embedded tissue. Lab Invest. 64:418–424. 1991. | |
Willert K and Nusse R: Beta-catenin: A key mediator of Wnt signaling. Curr Opin Genet Dev. 8:95–102. 1998. View Article : Google Scholar | |
Wang JL, Qi Z, Li YH, Zhao HM, Chen YG and Fu W: TGFβ induced factor homeobox 1 promotes colorectal cancer development through activating Wnt/β-catenin signaling. Oncotarget. 8:70214–70225. 2017. | |
Clevers H: Wnt/β-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar | |
Sheahan K, O'Brien MJ, Burke B, Dervan PA, O'Keane JC, Gottlieb LS and Zamcheck N: Differential reactivities of carcinoembryonic antigen (CEA) and CEA-related monoclonal and polyclonal antibodies in common epithelial malignancies. Am J Clin Pathol. 94:157–164. 1990. View Article : Google Scholar | |
Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC and Rubin MA: Alpha-methylacyl-CoA racemase: A novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 26:926–931. 2002. View Article : Google Scholar | |
Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E and Tekkis PP: Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg Oncol. 18:15–24. 2009. View Article : Google Scholar | |
Andrianifahanana M, Moniaux N and Batra SK: Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta. 1765:189–222. 2006. | |
Hanski C, Hofmeier M, Schmitt-Gräff A, Riede E, Hanski ML, Borchard F, Sieber E, Niedobitek F, Foss HD, Stein H and Riecken EO: Overexpression or ectopic expression of MUC2 is the common property of mucinous carcinomas of the colon, pancreas, breast, and ovary. J Pathol. 182:385–391. 1997. View Article : Google Scholar | |
Zlatian OM, Comănescu MV, Roşu AF, Roşu L, Cruce M, Găman AE, Călina CD and Sfredel V: Histochemical and immunohistochemical evidence of tumor heterogeneity in colorectal cancer. Rom J Morphol Embryol. 56:175–181. 2015. | |
Park SY, Lee HS, Choe G, Chung JH and Kim WH: Clinicopathological characteristics, microsatellite instability, and expression of mucin core proteins and p53 in colorectal mucinous adenocarcinomas in relation to location. Virchows Arch. 449:40–47. 2006. View Article : Google Scholar | |
King RJ, Yu F and Singh PK: Genomic alterations in mucins across cancers. Oncotarget. 8:67152–67168. 2017. View Article : Google Scholar | |
Wang H, Jin S, Lu H, Mi S, Shao W, Zuo X, Yin H, Zeng S, Shimamoto F and Qi G: Expression of survivin, MUC2 and MUC5 in colorectal cancer and their association with clinicopathological characteristics. Oncol Lett. 14:1011–1016. 2017. View Article : Google Scholar | |
Dantzig AH, Hoskins JA, Tabas LB, Bright S, Shepard RL, Jenkins IL, Duckworth DC, Sportsman JR, Mackensen D, Rosteck PR Jr, et al: Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 264:430–433. 1994. View Article : Google Scholar | |
Su MC, Yuan RH, Lin CY and Jeng YM: Cadherin-17 is a useful diagnostic marker for adenocarcinomas of the digestive system. Mod Pathol. 21:1379–1386. 2008. View Article : Google Scholar | |
Panarelli NC, Yantiss RK, Yeh MM, Liu Y and Chen YT: Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol. 138:211–222. 2012. View Article : Google Scholar | |
Stănculescu D, Mărgăritescu C, Stepan A and Mitruţ AO: E-cadherin in gastric carcinomas related to histological prognostic parameters. Rom J Morphol Embryol. 52 Suppl:1107–1112. 2011. | |
Bian T, Zhao J, Feng J, Zhang Q, Qian L, Liu J, Jiang D, Liu Y and Zhang J: Combination of cadherin-17 and SATB homeobox 2 serves as potential optimal makers for the differential diagnosis of pulmonary enteric adenocarcinoma and metastatic colorectal adenocarcinoma. Oncotarget. 8:63442–63452. 2017. View Article : Google Scholar | |
Tian X, Liu M, Zhu Q, Tan J, Liu W, Wang Y, Chen W, Zou Y, Cai Y, Han Z and Huang X: Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells. Expert Rev Anticancer Ther. 17:857–863. 2017. View Article : Google Scholar | |
Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, Naicker K, Klinger R, Kampf C, Asplund A, et al: SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 35:937–948. 2011. View Article : Google Scholar | |
Valori R, Rey JF, Atkin WS, Bretthauer M, Senore C, Hoff G, Kuipers EJ, Altenhofen L, Lambert R and Minoli G: International Agency for Research on Cancer: European guidelines for quality assurance in colorectal cancer screening and diagnosis First Edition - quality assurance in endoscopy in colorectal cancer screening and diagnosis. Endoscopy. 44 Suppl 3:SE88–SE105. 2012. | |
Lieberman DA and Weiss DG: Veterans Affairs Cooperative Study Group 380: One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N Engl J Med. 345:555–560. 2001. View Article : Google Scholar | |
Young GP, Symonds EL, Allison JE, Cole SR, Fraser CG, Halloran SP, Kuipers EJ and Seaman HE: Advances in fecal occult blood tests: The FIT revolution. Dig Dis Sci. 60:609–622. 2015. View Article : Google Scholar | |
Whitlock EP, Lin J, Liles E, Beil T, Fu R, O'Connor E, Thompson RN and Cardenas T: Screening for Colorectal Cancer: An Updated Systematic ReviewAgency for Healthcare Research and Quality. Rockville, MD: 2008 | |
Morikawa T, Kato J, Yamaji Y, Wada R, Mitsushima T and Shiratori Y: A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population. Gastroenterology. 129:422–428. 2005. View Article : Google Scholar | |
Gupta AK, Melton LJ III, Petersen GM, Timmons LJ, Vege SS, Harmsen WS, Diehl NN, Zinsmeister AR and Ahlquist DA: Changing trends in the incidence, stage, survival, and screen-detection of colorectal cancer: A population-based study. Clin Gastroenterol Hepatol. 3:150–158. 2005. View Article : Google Scholar | |
Puccini A, Berger MD, Naseem M, Tokunaga R, Battaglin F, Cao S, Hanna DL, McSkane M, Soni S, Zhang W and Lenz HJ: Colorectal cancer: Epigenetic alterations and their clinical implications. Biochim Biophys Acta. 1868:439–448. 2017. | |
Losso GM, Moraes RS, Gentili AC and Messias-Reason IT: Microsatellite instability - MSI markers (BAT26, BAT25, D2S123, D5S346, D17S250) in rectal cancer. Arq Bras Cir Dig. 25:240–244. 2012. View Article : Google Scholar | |
de la Chapelle A and Hampel H: Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 28:3380–3387. 2010. View Article : Google Scholar | |
Merok MA, Ahlquist T, Røyrvik EC, Tufteland KF, Hektoen M, Sjo OH, Mala T, Svindland A, Lothe RA and Nesbakken A: Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: Results from a large, consecutive Norwegian series. Ann Oncol. 24:1274–1282. 2013. View Article : Google Scholar | |
Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, et al: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 96:261–268. 2004. View Article : Google Scholar | |
Laghi L, Bianchi P and Malesci A: Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene. 27:6313–6321. 2008. View Article : Google Scholar | |
Roth AD, Tejpar S, Yan P, Fiocca R, Dietrich D, Delorenzi M, Labianca R, Cunningham D, Van Cutsem E and Bosman F: Stage-specific prognostic value of molecular markers in colon cancer: Results of the translational study on the PETACC 3-EORTC 40993-SAKK 60–00 trial. J Clin Oncol. 27 15 Suppl:40022009. | |
Koopman M, Kortman GA, Mekenkamp L, Ligtenberg MJ, Hoogerbrugge N, Antonini NF, Punt CJ and van Krieken JH: Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer. 100:266–273. 2009. View Article : Google Scholar | |
Ulamec M and Krušlin B: Colorectal cancer, novel biomarkers and immunohistochemistry - an overview. Rad Med Sci. 520:41–49. 2014. | |
Hashimoto Y, Zumwalt TJ and Goel A: DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics. 8:685–703. 2016. View Article : Google Scholar | |
Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB and Schuebel KE: De novo CpG island methylation in human cancer cells. Cancer Res. 66:682–692. 2006. View Article : Google Scholar | |
Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV and Tomlinson IP: Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol. 229:697–704. 2013. View Article : Google Scholar | |
Toiyama Y, Okugawa Y and Goel A: DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochem Biophys Res Commun. 455:43–57. 2014. View Article : Google Scholar | |
Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, Hektoen M, Rognum TO, Meling GI, Hoff G, et al: Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer. 10:852011. View Article : Google Scholar | |
Cheung AF, Carter AM, Kostova KK, Woodruff JF, Crowley D, Bronson RT, Haigis KM and Jacks T: Complete deletion of Apc results in severe polyposis in mice. Oncogene. 29:1857–1864. 2010. View Article : Google Scholar | |
Dow LE, O'Rourke KP, Simon J, Tschaharganeh DF, van Es JH, Clevers H and Lowe SW: Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell. 161:1539–1552. 2015. View Article : Google Scholar | |
Liang J, Lin C, Hu F, Wang F, Zhu L, Yao X, Wang Y and Zhao Y: APC polymorphisms and the risk of colorectal neoplasia: A HuGE review and meta-analysis. Am J Epidemiol. 177:1169–1179. 2013. View Article : Google Scholar | |
Docea AO, Mitruţ P, Grigore D, Pirici D, Călina DC and Gofiţă E: Immunohistochemical expression of TGF beta (TGF-β), TGF beta receptor 1 (TGFBR1), and Ki67 in intestinal variant of gastric adenocarcinomas. Rom J Morphol Embryol. 53 Suppl:683–692. 2012. | |
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD and Knippers R: DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61:1659–1665. 2001. | |
Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, Sozzi G, Bertario L, Leo E, Pilotti S and Pierotti MA: Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 263:170–181. 2008. View Article : Google Scholar | |
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA, Juhl H, et al: Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 102:16368–16373. 2005. View Article : Google Scholar | |
Tänzer M, Balluff B, Distler J, Hale K, Leodolter A, Röcken C, Molnar B, Schmid R, Lofton-Day C, Schuster T and Ebert MP: Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One. 5:e90612010. View Article : Google Scholar | |
Danese E and Montagnana M: Epigenetics of colorectal cancer: Emerging circulating diagnostic and prognostic biomarkers. Ann Transl Med. 5:2792017. View Article : Google Scholar | |
Ahlquist DA, Harrington JJ, Burgart LJ and Roche PC: Morphometric analysis of the ‘mucocellular layer’ overlying colorectal cancer and normal mucosa: Relevance to exfoliation and stool screening. Hum Pathol. 31:51–57. 2000. View Article : Google Scholar | |
Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, Platzer P, Lu S, Dawson D, Willis J, et al: Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst. 97:1124–1132. 2005. View Article : Google Scholar | |
Itzkowitz S, Brand R, Jandorf L, Durkee K, Millholland J, Rabeneck L, Schroy PC III, Sontag S, Johnson D, Markowitz S, et al: A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol. 103:2862–2870. 2008. View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar | |
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar | |
Mendell JT: MicroRNAs: Critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4:1179–1184. 2005. View Article : Google Scholar | |
Vasudevan S, Tong Y and Steitz JA: Switching from repression to activation: MicroRNAs can up-regulate translation. Science. 318:1931–1934. 2007. View Article : Google Scholar | |
Creemers EE, Tijsen AJ and Pinto YM: Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 110:483–495. 2012. View Article : Google Scholar | |
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, et al: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 108:5003–5008. 2011. View Article : Google Scholar | |
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD and Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 13:423–433. 2011. View Article : Google Scholar | |
Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR and Goel A: Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 105:849–859. 2013. View Article : Google Scholar | |
Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS and Sung JJ: Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar | |
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP and Galandiuk S: Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis. Br J Cancer. 116:762–774. 2017. View Article : Google Scholar | |
Okugawa, Grady WM and Goel A: Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology. 149:1204–1225.e12. 2015. View Article : Google Scholar | |
Chen M, Lin M and Wang X: Over expression of miR-19a inhibits colorectal cancer angiogenesis by suppressing KRAS expression. Oncol Rep. 39:619–626. 2018. | |
Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR and Goel A: Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev. 19:1766–1774. 2010. View Article : Google Scholar | |
Zhu Y, Xu A, Li J, Fu J, Wang G, Yang Y, Cui L and Sun J: Fecal miR-29a and miR-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark. 16:259–264. 2016. View Article : Google Scholar | |
Masuda T, Hayashi N, Kuroda Y, Ito S, Eguchi H and Mimori K: MicroRNAs as biomarkers in colorectal cancer. Cancers (Basel). 9:1242017. View Article : Google Scholar | |
Edge SB and Compton CC: The American Joint Committee on Cancer: The 7th edition of the AJCC Cancer Staging Manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010. View Article : Google Scholar | |
Perez RO, Bresciani BH, Bresciani C, Proscurshim I, Kiss D, Gama-Rodrigues J, Pereira DD, Rawet V, Cecconnello I and Habr-Gama A: Mucinous colorectal adenocarcinoma: Influence of mucin expression (Muc1, 2 and 5) on clinico-pathological features and prognosis. Int J Colorectal Dis. 23:757–765. 2008. View Article : Google Scholar | |
Wang S, Zhou J, Wang XY, Hao JM, Chen JZ, Zhang XM, Jin H, Liu L, Zhang YF, Liu J, et al: Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J Pathol. 219:114–122. 2009. View Article : Google Scholar | |
Eberhard J, Gaber A, Wangefjord S, Nodin B, Uhlén M, Lindquist Ericson K and Jirström K: A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br J Cancer. 106:931–938. 2012. View Article : Google Scholar | |
Bae JM, Lee TH, Cho NY, Kim TY and Kang GH: Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol. 21:1457–1467. 2015. View Article : Google Scholar | |
Falchook GS and Kurzrock R: VEGF and dual-EGFR inhibition in colorectal cancer. Cell Cycle. 14:1129–1130. 2015. View Article : Google Scholar | |
Li D, Yan D, Tang H, Zhou C, Fan J, Li S, Wang X, Xia J, Huang F, Qiu G and Peng Z: IMP3 is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Ann Surg Oncol. 16:3499–3506. 2009. View Article : Google Scholar | |
Takahashi H, Ishikawa T, Ishiguro M, Okazaki S, Mogushi K, Kobayashi H, Iida S, Mizushima H, Tanaka H, Uetake H and Sugihara K: Prognostic significance of Traf2- and Nck-interacting kinase (TNIK) in colorectal cancer. BMC Cancer. 15:7942015. View Article : Google Scholar | |
Spandidos DA, Glarakis IS, Kotsinas A, Ergazaki M and Kiaris H: Ras oncogene activation in benign and malignant colorectal tumours. Tumori. 81 Suppl:7–11. 1995. | |
Kiaris H and Spandidos D: Mutations of ras genes in human tumors (Review). Int J Oncol. 7:413–421. 1995. | |
Rui YY, Zhang D, Zhou ZG, Wang C, Yang L, Yu YY and Chen HN: Can K-ras gene mutation be utilized as prognostic biomarker for colorectal cancer patients receiving chemotherapy? A meta-analysis and systematic review. PLoS One. 8:e779012013. View Article : Google Scholar | |
Andreyev HJN, Norman AR, Cunningham D, Oates JR and Clarke PA: Kirsten ras mutations in patients with colorectal cancer: The multicenter ‘RASCAL’ study. J Natl Cancer Inst. 90:675–684. 1998. View Article : Google Scholar | |
Andreyev HJN, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, Young J, Walsh T, Ward R, Hawkins N, et al: Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br J Cancer. 85:692–696. 2001. View Article : Google Scholar | |
Wang Y, Velho S, Vakiani E, Peng S, Bass AJ, Chu GC, Gierut J, Bugni JM, Der CJ, Philips M, et al: Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cancer development and progression. Cancer Discov. 3:294–307. 2013. View Article : Google Scholar | |
Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T and Gebbia N: TP53-CRC Collaborative Study Group: The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: Influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol. 23:7518–7528. 2005. View Article : Google Scholar | |
French AJ, Sargent DJ, Burgart LJ, Foster NR, Kabat BF, Goldberg R, Shepherd L, Windschitl HE and Thibodeau SN: Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 14:3408–3415. 2008. View Article : Google Scholar | |
Toon CW, Chou A, DeSilva K, Chan J, Patterson J, Clarkson A, Sioson L, Jankova L and Gill AJ: BRAFV600E immunohistochemistry in conjunction with mismatch repair status predicts survival in patients with colorectal cancer. Mod Pathol. 27:644–650. 2014. View Article : Google Scholar | |
Zlobec I, Bihl MP, Schwarb H, Terracciano L and Lugli A: Clinicopathological and protein characterization of BRAF- and K-RAS-mutated colorectal cancer and implications for prognosis. Int J Cancer. 127:367–380. 2010. | |
Ogino S, Shima K, Meyerhardt JA, McCleary NJ, Ng K, Hollis D, Saltz LB, Mayer RJ, Schaefer P, Whittom R, et al: Predictive and prognostic roles of BRAF mutation in stage III colon cancer: Results from intergroup trial CALGB 89803. Clin Cancer Res. 18:890–900. 2012. View Article : Google Scholar | |
Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M and Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 342:69–77. 2000. View Article : Google Scholar | |
Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, et al: Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 349:247–257. 2003. View Article : Google Scholar | |
Schee K, Boye K, Abrahamsen TW, Fodstad Ø and Flatmark K: Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer. 12:5052012. View Article : Google Scholar | |
Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, Hu Y, Yi T, Zhao X, Zhou S and Wei Y: MicroRNAs in colorectal cancer: Small molecules with big functions. Cancer Lett. 360:89–105. 2015. View Article : Google Scholar | |
Shen WW, Zeng Z, Zhu WX and Fu GH: MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl). 91:989–1000. 2013. View Article : Google Scholar | |
Liu X, Wang Y and Zhao J: MicroRNA-337 inhibits colorectal cancer progression by directly targeting KRAS and suppressing the AKT and ERK pathways. Oncol Rep. 38:3187–3196. 2017. View Article : Google Scholar | |
Wen L, Li Y, Jiang Z, Zhang Y, Yang B and Han F: miR-944 inhibits cell migration and invasion by targeting MACC1 in colorectal cancer. Oncol Rep. 37:3415–3422. 2017. View Article : Google Scholar | |
Dai H, Hou K, Cai Z, Zhou Q and Zhu S: Low-level miR-646 in colorectal cancer inhibits cell proliferation and migration by targeting NOB1 expression. Oncol Lett. 14:6708–6714. 2017. | |
Xu Y, Chen J, Gao C, Zhu D, Xu X, Wu C and Jiang J: MicroRNA-497 inhibits tumor growth through targeting insulin receptor substrate 1 in colorectal cancer. Oncol Lett. 14:6379–6386. 2017. | |
Yang IP, Tsai HL, Miao ZF, Huang CW, Kuo CH, Wu JY, Wang WM, Juo SH and Wang JY: Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients. J Transl Med. 14:1082016. View Article : Google Scholar | |
Bovell LC, Shanmugam C, Putcha BD, Katkoori VR, Zhang B, Bae S, Singh KP, Grizzle WE and Manne U: The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. Clin Cancer Res. 19:3955–3965. 2013. View Article : Google Scholar | |
Peng Q, Zhang X, Min M, Zou L, Shen P and Zhu Y: The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: A systematic review and meta-analysis. Oncotarget. 8:44893–44909. 2017. | |
Cao J, Yan XR, Liu T, Han XB, Yu JJ, Liu SH and Wang LB: MicroRNA-552 promotes tumor cell proliferation and migration by directly targeting DACH1 via the Wnt/β-catenin signaling pathway in colorectal cancer. Oncol Lett. 14:3795–3802. 2017. View Article : Google Scholar | |
Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, Jiang W, Yue B, Wang J, Zhang M, et al: MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget. 7:45199–45213. 2016. View Article : Google Scholar | |
Fukushima Y, Iinuma H, Tsukamoto M, Matsuda K and Hashiguchi Y: Clinical significance of microRNA-21 as a biomarker in each Dukes' stage of colorectal cancer. Oncol Rep. 33:573–582. 2015. View Article : Google Scholar | |
Shibuya H, Iinuma H, Shimada R, Horiuchi A and Watanabe T: Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 79:313–320. 2010. View Article : Google Scholar | |
Wang LG and Gu J: Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 36:e61–e67. 2012. View Article : Google Scholar | |
He PY, Yip WK, Chai BL, Chai BY, Jabar MF, Dusa N, Mohtarrudin N and Seow HF: Inhibition of cell migration and invasion by miR 29a 3p in a colorectal cancer cell line through suppression of CDC42BPA mRNA expression. Oncol Rep. 38:3554–3566. 2017. | |
Lv ZC, Fan YS, Chen HB and Zhao DW: Investigation of microRNA-155 as a serum diagnostic and prognostic biomarker for colorectal cancer. Tumour Biol. 36:1619–1625. 2015. View Article : Google Scholar | |
Zhao J, Xu J and Zhang R: MicroRNA-411 inhibits malignant biological behaviours of colorectal cancer cells by directly targeting PIK3R3. Oncol Rep. 39:633–642. 2018. | |
Park YJ, Park KJ, Park JG, Lee KU, Choe KJ and Kim JP: Prognostic factors in 2230 Korean colorectal cancer patients: Analysis of consecutively operated cases. World J Surg. 23:721–726. 1999. View Article : Google Scholar | |
Park YJ, Youk EG, Choi HS, Han SU, Park KJ, Lee KU, Choe KJ and Park JG: Experience of 1446 rectal cancer patients in Korea and analysis of prognostic factors. Int J Colorectal Dis. 14:101–106. 1999. View Article : Google Scholar | |
Wu ZY, Wan J, Zhao G, Peng L, Du JL, Yao Y, Liu QF and Lin HH: Risk factors for local recurrence of middle and lower rectal carcinoma after curative resection. World J Gastroenterol. 14:4805–4809. 2008. View Article : Google Scholar | |
Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF and Bast RC Jr: ASCO: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 24:5313–5327. 2006. View Article : Google Scholar | |
Ozawa T, Ishihara S, Kawai K, Nozawa H, Yamaguchi H, Kitayama J and Watanabe T: Prognostic significance of preoperative serum carbohydrate antigen 19-9 in patients with stage IV colorectal cancer. Clin Colorectal Cancer. 15:e157–e163. 2016. View Article : Google Scholar | |
Tol J, Koopman M, Miller MC, Tibbe A, Cats A, Creemers GJ, Vos AH, Nagtegaal ID, Terstappen LW and Punt CJ: Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol. 21:1006–1012. 2010. View Article : Google Scholar | |
Sastre J, Maestro ML, Gómez-España A, Rivera F, Valladares M, Massuti B, Benavides M, Gallén M, Marcuello E, Abad A, et al: Circulating tumor cell count is a prognostic factor in metastatic colorectal cancer patients receiving first-line chemotherapy plus bevacizumab: A Spanish Cooperative Group for the Treatment of Digestive Tumors study. Oncologist. 17:947–955. 2012. View Article : Google Scholar | |
Dinu D, Dobre M, Panaitescu E, Bîrlă R, Iosif C, Hoara P, Caragui A, Boeriu M, Constantinoiu S and Ardeleanu C: Prognostic significance of KRAS gene mutations in colorectal cancer - preliminary study. J Med Life. 7:581–587. 2014. | |
Peeters M, Douillard JY, Van Cutsem E, Siena S, Zhang K, Williams R and Wiezorek J: Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: Assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol. 31:759–765. 2013. View Article : Google Scholar | |
De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, et al: Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 304:1812–1820. 2010. View Article : Google Scholar | |
Hecht JR, Douillard JY, Schwartzberg L, Grothey A, Kopetz S, Rong A, Oliner KS and Sidhu R: Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev. 41:653–659. 2015. View Article : Google Scholar | |
Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B and Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 418:9342002. View Article : Google Scholar | |
Toon CW, Walsh MD, Chou A, Capper D, Clarkson A, Sioson L, Clarke S, Mead S, Walters RJ, Clendenning M, et al: BRAFV600E immunohistochemistry facilitates universal screening of colorectal cancers for Lynch syndrome. Am J Surg Pathol. 37:1592–1602. 2013. View Article : Google Scholar | |
Kuan SF, Navina S, Cressman KL and Pai RK: Immunohistochemical detection of BRAF V600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol. 45:464–472. 2014. View Article : Google Scholar | |
De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al: Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 11:753–762. 2010. View Article : Google Scholar | |
Popat S, Hubner R and Houlston RS: Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar | |
Sargent DJ, Marsoni S, Thibodeau SN, Labianca R, Hamilton SR, Torri V, Monges G, Ribic C, Grothey A and Gallinger S: Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): A pooled molecular reanalysis of randomized chemotherapy trials. J Clin Oncol. 26 15 suppl:40082008. View Article : Google Scholar | |
Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, Balaguer F, Sempere L, Xicola RM, Bujanda L, et al: Gastrointestinal Oncology Group of the Spanish Gastroenterological Association: The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer. 45:365–373. 2009. View Article : Google Scholar | |
Pohl A, El-Khoueiry A, Yang D, Zhang W, Lurje G, Ning Y, Winder T, Hu-Lieskoven S, Iqbal S, Danenberg KD, et al: Pharmacogenetic profiling of CD133 is associated with response rate (RR) and progression-free survival (PFS) in patients with metastatic colorectal cancer (mCRC), treated with bevacizumab-based chemotherapy. Pharmacogenomics J. 13:173–180. 2013. View Article : Google Scholar | |
Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R and Salto-Tellez M: CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod Pathol. 23:450–457. 2010. View Article : Google Scholar | |
Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB and Cech TR: Telomerase catalytic subunit homologs from fission yeast and human. Science. 277:955–959. 1997. View Article : Google Scholar | |
Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK and Spitz MR: Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst. 95:1211–1218. 2003. View Article : Google Scholar | |
Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstätter A, Kronenberg F and Kiechl S: Telomere length and risk of incident cancer and cancer mortality. JAMA. 304:69–75. 2010. View Article : Google Scholar | |
Calado RT and Young NS: Telomere diseases. N Engl J Med. 361:2353–2365. 2009. View Article : Google Scholar | |
O'Sullivan J, Risques RA, Mandelson MT, Chen L, Brentnall TA, Bronner MP, Macmillan MP, Feng Z, Siebert JR, Potter JD and Rabinovitch PS: Telomere length in the colon declines with age: A relation to colorectal cancer? Cancer Epidemiol Biomarkers Prev. 15:573–577. 2006. View Article : Google Scholar | |
Raynaud CM, Jang SJ, Nuciforo P, Lantuejoul S, Brambilla E, Mounier N, Olaussen KA, André F, Morat L, Sabatier L and Soria JC: Telomere shortening is correlated with the DNA damage response and telomeric protein down-regulation in colorectal preneoplastic lesions. Ann Oncol. 19:1875–1881. 2008. View Article : Google Scholar | |
Aghagolzadeh P and Radpour R: New trends in molecular and cellular biomarker discovery for colorectal cancer. World J Gastroenterol. 22:5678–5693. 2016. View Article : Google Scholar | |
Fernández-Marcelo T, Sánchez-Pernaute A, Pascua I, De Juan C, Head J, Torres-García A-J and Iniesta P: Clinical relevance of telomere status and telomerase activity in colorectal cancer. PLoS One. 11:e01496262016. View Article : Google Scholar | |
Gertler R, Rosenberg R, Stricker D, Friederichs J, Hoos A, Werner M, Ulm K, Holzmann B, Nekarda H and Siewert JR: Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol. 22:1807–1814. 2004. View Article : Google Scholar | |
Norppa H and Falck GC: What do human micronuclei contain? Mutagenesis. 18:221–233. 2003. View Article : Google Scholar | |
Farhadi S and Mohamadi M and Mohamadi M: Repair index in examination of nuclear changes in the buccal mucosa of smokers: a useful method for screening of oral cancer. Asian Pac J Cancer Prev. 18:3087–3090. 2017. | |
El-Zein RA, Abdel-Rahman S, Santee KJ, Yu R and Shete S: Identification of small and non-small cell lung cancer markers in peripheral blood using cytokinesis-blocked micronucleus and spectral karyotyping assays. Cytogenet Genome Res. 152:122–131. 2017. View Article : Google Scholar | |
Maffei F, Moraga Zolezzi JM, Angelini S, Zenesini C, Musti M, Festi D, Cantelli-Forti G and Hrelia P: Micronucleus frequency in human peripheral blood lymphocytes as a biomarker for the early detection of colorectal cancer risk. Mutagenesis. 29:221–225. 2014. View Article : Google Scholar | |
Karaman A, Binici DN, Kabalar ME and Calikuşu Z: Micronucleus analysis in patients with colorectal adenocarcinoma and colorectal polyps. World J Gastroenterol. 14:6835–6839. 2008. View Article : Google Scholar | |
Ravegnini G, Moraga Zolezzi JM, Maffei F, Musti M, Zenesini C, Simeon V, Sammarini G, Festi D, Hrelia P and Angelini S: Simultaneous analysis of SEPT9 promoter methylation status, micronuclei frequency, and folate-related gene polymorphisms: The potential for a novel blood-based colorectal cancer biomarker. Int J Mol Sci. 16:28486–284897. 2015. View Article : Google Scholar | |
Ionescu EM, Nicolaie T, Ionescu MA, Becheanu G, Andrei F, Diculescu M and Ciocirlan M: Predictive cytogenetic biomarkers for colorectal neoplasia in medium risk patients. J Med Life. 8:398–403. 2015. | |
Kronborg O, Jørgensen OD, Fenger C and Rasmussen M: Randomized study of biennial screening with a faecal occult blood test: Results after nine screening rounds. Scand J Gastroenterol. 39:846–851. 2004. View Article : Google Scholar | |
Scholefield JH, Moss S, Sufi F, Mangham CM and Hardcastle JD: Effect of faecal occult blood screening on mortality from colorectal cancer: Results from a randomised controlled trial. Gut. 50:840–844. 2002. View Article : Google Scholar | |
Health Quality Ontario, . Fecal occult blood test for colorectal cancer screening: An evidence-based analysis. Ont Health Technol Assess Ser. 9:1–40. 2009. | |
Dancourt V, Lejeune C, Lepage C, Gailliard MC, Meny B and Faivre J: Immunochemical faecal occult blood tests are superior to guaiac-based tests for the detection of colorectal neoplasms. Eur J Cancer. 44:2254–2258. 2008. View Article : Google Scholar | |
Faivre J, Dancourt V, Denis B, Dorval E, Piette C, Perrin P, Bidan JM, Jard C, Jung S, Levillain R, et al: Comparison between a guaiac and three immunochemical faecal occult blood tests in screening for colorectal cancer. Eur J Cancer. 48:2969–2976. 2012. View Article : Google Scholar | |
Lin JS, Piper MA, Perdue LA, Rutter CM, Webber EM, O'Connor E, Smith N and Whitlock EP: Screening for colorectal cancer: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 315:2576–2594. 2016. View Article : Google Scholar | |
Koo S, Neilson LJ, Von Wagner C and Rees CJ: The NHS bowel cancer screening program: Current perspectives on strategies for improvement. Risk Manag Healthc Policy. 10:177–187. 2017. View Article : Google Scholar | |
Moss S, Mathews C, Day TJ, Smith S, Seaman HE, Snowball J and Halloran SP: Increased uptake and improved outcomes of bowel cancer screening with a faecal immunochemical test: Results from a pilot study within the national screening programme in England. Gut. 66:1631–1644. 2017. View Article : Google Scholar | |
Rozen P, Levi Z, Hazazi R, Waked A, Vilkin A, Maoz E, Birkenfeld S and Niv Y: Quantitative colonoscopic evaluation of relative efficiencies of an immunochemical faecal occult blood test and a sensitive guaiac test for detecting significant colorectal neoplasms. Aliment Pharmacol Ther. 29:450–457. 2009. View Article : Google Scholar | |
Hoffman RM, Steel S, Yee EFT, Massie L, Schrader RM and Murata GH: Colorectal cancer screening adherence is higher with fecal immunochemical tests than guaiac-based fecal occult blood tests: A randomized, controlled trial. Prev Med. 50:297–299. 2010. View Article : Google Scholar | |
Brenner H and Tao S: Superior diagnostic performance of faecal immunochemical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy. Eur J Cancer. 49:3049–3054. 2013. View Article : Google Scholar | |
Fitzpatrick-Lewis D, Ali MU, Warren R, Kenny M, Sherifali D and Raina P: Screening for colorectal cancer: A systematic review and meta-analysis. Clin Colorectal Cancer. 15:298–313. 2016. View Article : Google Scholar | |
Murphy J, Halloran S and Gray A: Cost-effectiveness of the faecal immunochemical test at a range of positivity thresholds compared with the guaiac faecal occult blood test in the NHS Bowel Cancer Screening Programme in England. BMJ Open. 7:e0171862017. View Article : Google Scholar | |
Lee JK, Liles EG, Bent S, Levin TR and Corley DA: Accuracy of fecal immunochemical tests for colorectal cancer: Systematic review and meta-analysis. Ann Intern Med. 160:1712014. View Article : Google Scholar |