BIIB021, an Hsp90 inhibitor: A promising therapeutic strategy for blood malignancies (Review)
- Authors:
- Wei He
- Huixian Hu
-
Affiliations: Department of Hematology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China - Published online on: May 8, 2018 https://doi.org/10.3892/or.2018.6422
- Pages: 3-15
This article is mentioned in:
Abstract
Amolins MW and Blagg BS: Natural product inhibitors of Hsp90: Potential leads for drug discovery. Mini Rev Med Chem. 9:140–152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen M, Zhou J and Zhang X: HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol. 45:18–30. 2014. View Article : Google Scholar : PubMed/NCBI | |
Whitesell L and Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 5:761–772. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scaltriti M, Dawood S and Cortes J: Molecular pathways: Targeting hsp90-who benefits and who does not. Clin Cancer Res. 18:4508–4513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H and Yamamoto T: Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 46:47–54. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hernandez MP, Chadli A and Toft DO: HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem. 277:11873–11881. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pratt WB, Galigniana MD, Morishima Y and Murphy PJ: Role of molecular chaperones in steroid receptor action. Essays Biochem. 40:41–58. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chandarlapaty S, Scaltriti M, Angelini P, Ye Q, Guzman M, Hudis CA, Norton L, Solit DB, Arribas J, Baselga J and Rosen N: Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth. Oncogene. 29:325–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Scaltriti M, Serra V, Normant E, Guzman M, Rodriguez O, Lim AR, Slocum KL, West KA, Rodriguez V, Prudkin L, et al: Antitumor activity of the Hsp90 inhibitor IPI-504 in HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther. 10:817–824. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Sawyers CL and Scher HI: Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol. 8:440–448. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vanaja DK, Mitchell SH, Toft DO and Young CY: Effect of geldanamycin on androgen receptor function and stability. Cell Stress Chaperones. 7:55–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et al: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI | |
da Rocha Dias S, Friedlos F, Light Y, Springer C, Workman P and Marais R: Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65:10686–10691. 2005. View Article : Google Scholar : PubMed/NCBI | |
Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM, et al: Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 40:600–608. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shimamura T, Lowell AM, Engelman JA and Shapiro GI: Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. 65:6401–6408. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shiotsu Y, Soga S and Akinaga S: Heat shock protein 90-antagonist destabilizes Bcr-Abl/HSP90 chaperone complex. Leuk Lymphoma. 43:961–968. 2002. View Article : Google Scholar : PubMed/NCBI | |
Castro JE, Prada CE, Loria O, Kamal A, Chen L, Burrows FJ and Kipps TJ: ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: Inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood. 106:2506–2512. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bauer S, Yu LK, Demetri GD and Fletcher JA: Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 66:9153–9161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU and Pavletich NP: Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell. 89:239–250. 1997. View Article : Google Scholar : PubMed/NCBI | |
Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW and Pearl LH: Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 42:260–266. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW and Pearl LH: Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 90:65–75. 1997. View Article : Google Scholar : PubMed/NCBI | |
Neckers L, Schulte TW and Mimnaugh E: Geldanamycin as a potential anti-cancer agent: Its molecular target and biochemical activity. Invest New Drugs. 17:361–373. 1999. View Article : Google Scholar : PubMed/NCBI | |
Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB, et al: 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 8:986–993. 2002.PubMed/NCBI | |
Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF, Kelly WK, DeLaCruz A, Curley T, Heller G, et al: Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res. 13:1775–1782. 2007. View Article : Google Scholar : PubMed/NCBI | |
Delmotte P and Delmotte-Plaque J: A new antifungal substance of fungal origin. Nature. 171:3441953. View Article : Google Scholar : PubMed/NCBI | |
Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T and Akinaga S: KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res. 59:2931–2938. 1999.PubMed/NCBI | |
Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L and Rosen N: A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol. 8:289–299. 2001. View Article : Google Scholar : PubMed/NCBI | |
Taldone T and Chiosis G: Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem. 9:1436–1446. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lundgren K, Zhang H, Brekken J, Huser N, Powell RE, Timple N, Busch DJ, Neely L, Sensintaffar JL, Yang YC, et al: BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther. 8:921–929. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Neely L, Lundgren K, Yang YC, Lough R, Timple N and Burrows F: BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int J Cancer. 126:1226–1234. 2010.PubMed/NCBI | |
Karvela M, Helgason GV and Holyoake TL: Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther. 12:381–392. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jain P, Kantarjian H, Jabbour E, Gonzalez GN, Borthakur G, Pemmaraju N, Daver N, Gachimova E, Ferrajoli A, Kornblau S, et al: Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: A phase 2 study. Lancet Haematol. 2:e376–e383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khajapeer KV and Baskaran R: Hsp90 inhibitors for the treatment of chronic myeloid leukemia. Leuk Res Treatment. 2015:7576942015.PubMed/NCBI | |
He W, Ye X, Huang X, Lel W, You L, Wang L, Chen X and Qian W: Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells. Int J Oncol. 48:1710–1720. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW and Armstrong SA: Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 10:412–424. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J and Zhang L: Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res. 71:3625–3634. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, et al: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1:e182010. View Article : Google Scholar : PubMed/NCBI | |
Glimelius I and Diepstra A: Novel treatment concepts in Hodgkin lymphoma. J Intern Med. 281:247–260. 2017. View Article : Google Scholar : PubMed/NCBI | |
Georgakis GV, Li Y, Rassidakis GZ, Martinez-Valdez H, Medeiros LJ and Younes A: Inhibition of heat shock protein 90 function by 17-allylamino-17-demethoxy-geldanamycin in Hodgkin's lymphoma cells down-regulates Akt kinase, dephosphorylates extracellular signal-regulated kinase, and induces cell cycle arrest and cell death. Clin Cancer Res. 12:584–590. 2006. View Article : Google Scholar : PubMed/NCBI | |
Broemer M, Krappmann D and Scheidereit C: Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene. 23:5378–5386. 2004. View Article : Google Scholar : PubMed/NCBI | |
Janz M, Stühmer T, Vassilev LT and Bargou RC: Pharmacologic activation of p53-dependent and p53-independent apoptotic pathways in Hodgkin/Reed-Sternberg cells. Leukemia. 21:772–779. 2007. View Article : Google Scholar : PubMed/NCBI | |
Boll B, Eltaib F, Reiners KS, von Tresckow B, Tawadros S, Simhadri VR, Burrows FJ, Lundgren K, Hansen HP, Engert A, et al: Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and sensitizes Hodgkin's lymphoma cells for natural killer cell-mediated cytotoxicity. Clin Cancer Res. 15:5108–5116. 2009. View Article : Google Scholar : PubMed/NCBI | |
Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, Schpero W, Kaplan DH, Hayday AC and Girardi M: Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol. 9:146–154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F, Bühring HJ, Dichgans J, Rammensee HG, Steinle A and Weller M: MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 63:8996–9006. 2003.PubMed/NCBI | |
Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J and Knowles DM: Primary effusion lymphoma: A distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood. 88:645–656. 1996.PubMed/NCBI | |
Gopalakrishnan R, Matta H and Chaudhary PM: A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-kB. Clin Cancer Res. 19:5016–5026. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey MN, Goshima F, Murata T, Kawada J, Ito Y, et al: The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 6:2802015. View Article : Google Scholar : PubMed/NCBI | |
Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, et al: Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 1:75–87. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang X, Zhou WJ, Chen YH, Liu H, Liu L, Yang CM and Qan WB: Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin. 34:1545–1553. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Li J, Zhou W, Qian W, Wang B and Chen Z: BIIB021, an Hsp90 inhibitor, effectively kills a myelodysplastic syndrome cell line via the activation of caspases and inhibition of PI3K/Akt and NF-kB pathway proteins. Exp Ther Med. 7:1539–1544. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rubin BP, Heinrich MC and Corless CL: Gastrointestinal stromal tumour. Lancet. 369:1731–1741. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W, Raymond AK, Prieto VG, Oyedeji CO, Hunt KK, et al: A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 64:5913–5919. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gramza AW, Corless CL and Heinrich MC: Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 15:7510–7518. 2009. View Article : Google Scholar : PubMed/NCBI | |
Solit DB and Rosen N: Hsp90: A novel target for cancer therapy. Curr Top Med Chem. 6:1205–1214. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dickson MA, Okuno SH, Keohan ML, Maki RG, D'Adamo DR, Akhurst TJ, Antonescu CR and Schwartz GK: phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol. 24:252–257. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saif MW, Takimoto C, Mita M, Banerji U, Lamanna N, Castro J, O'Brien S, Stogard C and Von Hoff D: A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin Cancer Res. 20:445–455. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ballestas ME, Chatis PA and Kaye KM: Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 284:641–644. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ballestas ME and Kaye KM: Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol. 75:3250–3258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Sin SH, Wen KW, Damania B and Dittmer DP: Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog. 8:e10030482012. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Zhang H, Lundgren K, Wilson L, Burrows F and Shores CG: BIIB021, a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int J Cancer. 126:1216–1225. 2010.PubMed/NCBI | |
Wang XT, Bao CH, Jia YB, Wang N, Ma W, Liu F, Wang C, Wang JB, Song QX and Cheng YF: BIIB021, a novel Hsp90 inhibitor, sensitizes esophageal squamous cell carcinoma to radiation. Biochem Biophys Res Commun. 452:945–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ and Lee SJ: Synergistic cytotoxicity of BIIB021 with triptolide through suppression of PI3K/Akt/mTOR and NF-kB signal pathways in thyroid carcinoma cells. Biomed Pharmacother. 83:22–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yufu Y, Nishimura J and Nawata H: High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res. 16:597–605. 1992. View Article : Google Scholar : PubMed/NCBI | |
Chant ID, Rose PE and Morris AG: Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol. 90:163–168. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE, Morgan G, Akiyama M, Shringarpure R, Munshi NC, et al: Antimyeloma activity of heat shock protein-90 inhibition. Blood. 107:1092–1100. 2006. View Article : Google Scholar : PubMed/NCBI | |
Valbuena JR, Rassidakis GZ, Lin P, Atwell C, Georgakis GV, Younes A, Jones D and Medeiros LJ: Expression of heat-shock protein-90 in non-Hodgkin's lymphomas. Mod Pathol. 18:1343–1349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Milani M, Laranjeira AB, de Vasconcellos JF, Brandalise SR, Nowill AE and Yunes JA: Plasma Hsp90 level as a marker of early acute lymphoblastic leukemia engraftment and progression in mice. PLoS One. 10:e01292982015. View Article : Google Scholar : PubMed/NCBI | |
Flandrin P, Guyotat D, Duval A, Cornillon J, Tavernier E, Nadal N and Campos L: Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones. 13:357–364. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reikvam H, Hatfield KJ, Ersvaer E, Hovland R, Skavland J, Gjertsen BT, Petersen K and Bruserud O: Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status-consequences and potentials for pharmacological intervention. Br J Haematol. 156:468–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsai HJ, Shih NY, Kuo SH, Cheng AL, Lin HY, Chen TY, Chang KC, Lin SF, Chang JS and Chen LT: AUY922 effectively targets against activated B cell subtype of diffuse large B-cell lymphoma and low-grade lymphoma cells harboring genetic alteration-associated nuclear factor-kB activation. Leuk Lymphoma. 56:2674–2682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cerchietti LC, Lopes EC, Yang SN, Hatzi K, Bunting KL, Tsikitas LA, Mallik A, Robles AI, Walling J, Varticovski L, et al: A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas. Nat Med. 15:1369–1376. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH, Yost A, Ma W, Fleischman AG, Zhou W, et al: TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 3:564–577. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI and Lindquist S: Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell. 150:987–1001. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, et al: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA. 106:8368–8373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Akahane K, Sanda T, Mansour MR, Radimerski T, DeAngelo DJ, Weinstock DM and Look AT: HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 30:219–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Georgakis GV, Li Y and Younes A: The heat shock protein 90 inhibitor 17-AAG induces cell cycle arrest and apoptosis in mantle cell lymphoma cell lines by depleting cyclin D1, Akt, Bid and activating caspase 9. Br J Haematol. 135:68–71. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sugimoto K, Sasaki M, Isobe Y, Tsutsui M, Suto H, Ando J, Tamayose K, Ando M and Oshimi K: Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1. Oncogene. 27:3091–3101. 2008. View Article : Google Scholar : PubMed/NCBI | |
George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P and Bhalla K: Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood. 105:1768–1776. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Kancha RK and Duyster J: Targeting oncoprotein stability overcomes drug resistance caused by FLT3 kinase domain mutations. PLoS One. 9:e971162014. View Article : Google Scholar : PubMed/NCBI | |
Al Shaer L, Walsby E, Gilkes A, Tonks A, Walsh V, Mills K, Burnett A and Rowntree C: Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling. Br J Haematol. 141:483–493. 2008. View Article : Google Scholar : PubMed/NCBI | |
Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E and Mecucci C: C-kit mutations in core binding factor leukemias. Blood. 95:726–727. 2000.PubMed/NCBI | |
Tsujimura A, Kiyoi H, Shiotsu Y, Ishikawa Y, Mori Y, Ishida H, Toki T, Ito E and Naoe T: Selective KIT inhibitor KI-328 and HSP90 inhibitor show different potency against the type of KIT mutations recurrently identified in acute myeloid leukemia. Int J Hematol. 92:624–633. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barnes DJ, De S, van Hensbergen P, Moravcsik E and Melo JV: Different target range and cytotoxic specificity of adaphostin and 17-allylamino-17-demethoxygeldanamycin in imatinib-resistant and sensitive cell lines. Leukemia. 21:421–426. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Xiao CL, Lu CH, Xia M, Xing GW, Xiong S, Liu QY, Liu H, Li YC, Ge F, et al: Transcriptomic and proteomic approach to studying SNX-2112-induced K562 cells apoptosis and anti-leukemia activity in K562-NOD/SCID mice. FEBS Lett. 583:1859–1866. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peng C, Brain J, Hu Y, Goodrich A, Kong L, Grayzel D, Pak R, Read M and Li S: Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood. 110:678–685. 2007. View Article : Google Scholar : PubMed/NCBI | |
Radujkovic A, Schad M, Topaly J, Veldwijk MR, Laufs S, Schultheis BS, Jauch A, Melo JV, Fruehauf S and Zeller WJ: Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL-Inhibition of P-glycoprotein function by 17-AAG. Leukemia. 19:1198–1206. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tauchi T, Okabe S, Ashihara E, Kimura S, Maekawa T and Ohyashiki K: Combined effects of novel heat shock protein 90 inhibitor NVP-AUY922 and nilotinib in a random mutagenesis screen. Oncogene. 30:2789–2797. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marubayashi S, Koppikar P, Taldone T, Abdel-Wahab O, West N, Bhagwat N, Caldas-Lopes E, Ross KN, Gonen M, Gozman A, et al: HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest. 120:3578–3593. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hertlein E, Wagner AJ, Jones J, Lin TS, Maddocks KJ, Towns WH III, Goettl VM, Zhang X, Jarjoura D, Raymond CA, et al: 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: Clinical implications of HSP90 inhibition. Blood. 116:45–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walsby E, Pearce L, Burnett AK, Fegan C and Pepper C: The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-kB signaling, overcomes microenvironmental cytoprotection and is highly synergistic with fludarabine in primary CLL cells. Oncotarget. 3:525–534. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trentin L, Frasson M, Donella-Deana A, Frezzato F, Pagano MA, Tibaldi E, Gattazzo C, Zambello R, Semenzato G and Brunati AM: Geldanamycin-induced Lyn dissociation from aberrant Hsp90-stabilized cytosolic complex is an early event in apoptotic mechanisms in B-chronic lymphocytic leukemia. Blood. 112:4665–4674. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen TL, Gupta N, Lehman A, Ruppert AS, Yu L, Oakes CC, Claus R, Plass C, Maddocks KJ, Andritsos L, et al: Hsp90 inhibition increases SOCS3 transcript and regulates migration and cell death in chronic lymphocytic leukemia. Oncotarget. 7:28684–28696. 2016.PubMed/NCBI | |
Gao L and Harhaj EW: HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-kB activation and HTLV-1 replication. J Virol. 87:13640–13654. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi H, Hasegawa H, Sasaki D, Ando K, Sawayama Y, Imanishi D, Taguchi J, Imaizumi Y, Hata T, Tsukasaki K, et al: Heat shock protein 90 inhibitor NVP-AUY922 exerts potent activity against adult T-cell leukemia-lymphoma cells. Cancer Sci. 105:1601–1608. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kurashina R, Ohyashiki JH, Kobayashi C, Hamamura R, Zhang Y, Hirano T and Ohyashiki K: Anti-proliferative activity of heat shock protein (Hsp) 90 inhibitors via beta-catenin/TCF7L2 pathway in adult T cell leukemia cells. Cancer Lett. 284:62–70. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ikebe E, Kawaguchi A, Tezuka K, Taguchi S, Hirose S, Matsumoto T, Mitsui T, Senba K, Nishizono A, Hori M, et al: Oral administration of an HSP90 inhibitor, 17-DMAG, intervenes tumor-cell infiltration into multiple organs and improves survival period for ATL model mice. Blood Cancer J. 3:e1322013. View Article : Google Scholar : PubMed/NCBI | |
Okawa Y, Hideshima T, Steed P, Vallet S, Hall S, Huang K, Rice J, Barabasz A, Foley B, Ikeda H, et al: SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 113:846–855. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakashima T, Ishii T, Tagaya H, Seike T, Nakagawa H, Kanda Y, Akinaga S, Soga S and Shiotsu Y: New molecular and biological mechanism of antitumor activities of KW-2478, a novel nonansamycin heat shock protein 90 inhibitor, in multiple myeloma cells. Clin Cancer Res. 16:2792–2802. 2010. View Article : Google Scholar : PubMed/NCBI | |
McCaig AM, Cosimo E, Leach MT and Michie AM: Dasatinib inhibits B cell receptor signalling in chronic lymphocytic leukaemia but novel combination approaches are required to overcome additional pro-survival microenvironmental signals. Br J Haematol. 153:199–211. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin K, Rockliffe N, Johnson GG, Sherrington PD and Pettitt AR: Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene. 27:2445–2455. 2008. View Article : Google Scholar : PubMed/NCBI | |
Best OG, Singh N, Forsyth C and Mulligan SP: The novel Hsp-90 inhibitor SNX7081 is significantly more potent than 17-AAG against primary CLL cells and a range of haematological cell lines, irrespective of lesions in the TP53 pathway. Br J Haematol. 151:185–188. 2010. View Article : Google Scholar : PubMed/NCBI | |
Best OG, Che Y, Singh N, Forsyth C, Christopherson RI and Mulligan SP: The Hsp90 inhibitor SNX-7081 synergizes with and restores sensitivity to fludarabine in chronic lymphocytic leukemia cells with lesions in the TP53 pathway: A potential treatment strategy for fludarabine refractory disease. Leuk Lymphoma. 53:1367–1375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, Toms AV, Marubayashi S, Christie AL, McKeown M, et al: Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 209:259–273. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ghia P, Chiorazzi N and Stamatopoulos K: Microenvironmental influences in chronic lymphocytic leukaemia: The role of antigen stimulation. J Intern Med. 264:549–562. 2008. View Article : Google Scholar : PubMed/NCBI | |
Newman B, Liu Y, Lee HF, Sun D and Wang Y: HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res. 72:4551–4561. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim HB, Lee SH, Um JH, Kim MJ, Hyun SK, Gong EJ, Oh WK, Kang CD and Kim SH: Sensitization of chemo-resistant human chronic myeloid leukemia stem-like cells to Hsp90 inhibitor by SIRT1 inhibition. Int J Biol Sci. 11:923–934. 2015. View Article : Google Scholar : PubMed/NCBI | |
Born EJ, Hartman SV and Holstein SA: Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells. Blood Cancer J. 3:e1672013. View Article : Google Scholar : PubMed/NCBI | |
Huston A, Leleu X, Jia X, Moreau AS, Ngo HT, Runnels J, Anderson J, Alsayed Y, Roccaro A, Vallet S, et al: Targeting Akt and heat shock protein 90 produces synergistic multiple myeloma cell cytotoxicity in the bone marrow microenvironment. Clin Cancer Res. 14:865–874. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ishii T, Seike T, Nakashima T, Juliger S, Maharaj L, Soga S, Akinaga S, Cavenagh J, Joel S and Shiotsu Y: Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2:e682012. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee M, Andrulis M, Stühmer T, Müller E, Hofmann C, Steinbrunn T, Heimberger T, Schraud H, Kressmann S, Einsele H and Bargou RC: The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica. 98:1132–1141. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaiser M, Lamottke B, Mieth M, Jensen MR, Quadt C, Garcia-Echeverria C, Atadja P, Heider U, von Metzler I, Türkmen S and Sezer O: Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur J Haematol. 84:337–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J, Timm M, Ngo H, Lu G, Huston A, et al: Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res. 12:6826–6835. 2006. View Article : Google Scholar : PubMed/NCBI | |
Goldstein RL, Yang SN, Taldone T, Chang B, Gerecitano J, Elenitoba-Johnson K, Shaknovich R, Tam W, Leonard JP, Chiosis G, et al: Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J Clin Invest. 125:4559–4571. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roué G, Pérez-Galan P, Mozos A, López-Guerra M, Xargay-Torrent S, Rosich L, Saborit-Villarroya I, Normant E, Campo E and Colomer D: The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood. 117:1270–1279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walsby EJ, Lazenby M, Pepper CJ, Knapper S and Burnett AK: The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells. Br J Haematol. 161:57–67. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lazenby M, Hills R, Burnett AK and Zabkiewicz J: The HSP90 inhibitor ganetespib: A potential effective agent for Acute Myeloid Leukemia in combination with cytarabine. Leuk Res. 39:617–624. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp JE, et al: Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood. 106:318–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lancet JE, Gojo I, Burton M, Quinn M, Tighe SM, Kersey K, Zhong Z, Albitar MX, Bhalla K, Hannah AL, et al: Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia. 24:699–705. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaufmann SH, Karp JE, Litzow MR, Mesa RA, Hogan W, Steensma DP, Flatten KS, Loegering DA, Schneider PA, Peterson KL, et al: Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica. 96:1619–1626. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yong K, Cavet J, Johnson P, Morgan G, Williams C, Nakashima D, Akinaga S, Oakervee H and Cavenagh J: phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with B-cell malignancies. Br J Cancer. 114:7–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M, Albitar M, Berman D, Messina M and Anderson KC: Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: Results of a phase 1/2 study. Br J Haematol. 153:729–740. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oki Y, Copeland A, Romaguera J, Fayad L, Fanale M, Faria Sde C, Medeiros LJ, Ivy P and Younes A: Clinical experience with the heat shock protein-90 inhibitor, tanespimycin, in patients with relapsed lymphoma. Leuk Lymphoma. 53:990–992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oki Y, Younes A, Knickerbocker J, Samaniego F, Nastoupil L, Hagemeister F, Romaguera J, Fowler N, Kwak L and Westin J: Experience with HSP90 inhibitor AUY922 in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica. 100:e272–e274. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maddocks K, Hertlein E, Chen TL, Wagner AJ, Ling Y, Flynn J, Phelps M, Johnson AJ, Byrd JC and Jones JA: A phase I trial of the intravenous Hsp90 inhibitor alvespimycin (17-DMAG) in patients with relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 57:2212–2215. 2016. View Article : Google Scholar : PubMed/NCBI |