1
|
Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee
JW, Verdine GL, Allis CD and Roeder RG: Regulation of MLL1 H3K4
methyltransferase activity by its core components. Nat Struct Mol
Biol. 13:713–719. 2006. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Han Z, Guo L, Wang H, Shen Y, Deng XW and
Chai J: Structural basis for the specific recognition of methylated
histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell.
22:137–144. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ang YS, Tsai SY, Lee DF, Monk J, Su J,
Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, et al: Wdr5 mediates
self-renewal and reprogramming via the embryonic stem cell core
transcriptional network. Cell. 145:183–197. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wysocka J, Swigut T, Milne TA, Dou Y,
Zhang X, Burlingame AL, Roeder RG, Brivanlou AH and Allis CD: WDR5
associates with histone H3 methylated at K4 and is essential for H3
K4 methylation and vertebrate development. Cell. 121:859–872. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim JY, Banerjee T, Vinckevicius A, Luo Q,
Parker JB, Baker MR, Radhakrishnan I, Wei JJ, Barish GD and
Chakravarti D: A role for WDR5 in integrating threonine 11
phosphorylation to lysine 4 methylation on histone H3 during
androgen signaling and in prostate cancer. Mol Cell. 54:613–625.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen X, Gu P, Li K, Xie W, Chen C, Lin T
and Huang J: Gene expression profiling of WDR5 regulated genes in
bladder cancer. Genom Data. 5:27–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tan X, Chen S, Wu J, Lin J, Pan C, Ying X,
Pan Z, Qiu L, Liu R, Geng R, et al: PI3K/AKT-mediated upregulation
of WDR5 promotes colorectal cancer metastasis by directly targeting
ZNF407. Cell Death Dis. 8:e26862017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ge Z, Song EJ, Kawasawa YI, Li J, Dovat S
and Song C: WDR5 high expression and its effect on tumorigenesis in
leukemia. Oncotarget. 7:37740–37754. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y,
Dong W, He W, Zhong G, Lin T, et al: Upregulated WDR5 promotes
proliferation, self-renewal and chemoresistance in bladder cancer
via mediating H3K4 trimethylation. Sci Rep. 5:82932015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Clarke SG: Protein methylation at the
surface and buried deep: Thinking outside the histone box. Trends
Biochem Sci. 38:243–252. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi Y and Whetstine JR: Dynamic regulation
of histone lysine methylation by demethylases. Mol Cell. 25:1–14.
2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bedford MT and Clarke SG: Protein arginine
methylation in mammals: Who, what, and why. Mol Cell. 33:1–13.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chuikov S, Kurash JK, Wilson JR, Xiao B,
Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, et
al: Regulation of p53 activity through lysine methylation. Nature.
432:353–360. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang J, Perez-Burgos L, Placek BJ,
Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T
and Berger SL: Repression of p53 activity by Smyd2-mediated
methylation. Nature. 444:629–632. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shi X, Kachirskaia I, Yamaguchi H, West
LE, Wen H, Wang EW, Dutta S, Appella E and Gozani O: Modulation of
p53 function by SET8-mediated methylation at lysine 382. Mol Cell.
27:636–646. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vershinin Z, Feldman M, Chen A and Levy D:
PAK4 methylation by SETD6 promotes the activation of the
Wnt/β-catenin pathway. J Biol Chem. 291:6786–6795. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bedford MT and Richard S: Arginine
methylation an emerging regulator of protein function. Mol Cell.
18:263–272. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang L, Zhao Z, Meyer MB, Saha S, Yu M,
Guo A, Wisinski KB, Huang W, Cai W, Pike JW, et al: CARM1
methylates chromatin remodeling factor BAF155 to enhance tumor
progression and metastasis. Cancer Cell. 25:21–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jansson M, Durant ST, Cho EC, Sheahan S,
Edelmann M, Kessler B and La Thangue NB: Arginine methylation
regulates the p53 response. Nat Cell Biol. 10:1431–1439. 2008.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Geng P, Zhang Y, Liu X, Zhang N, Liu Y,
Liu X, Lin C, Yan X, Li Z, Wang G, et al: Automethylation of
protein arginine methyltransferase 7 and its impact on breast
cancer progression. FASEB J. 31:2287–2300. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yao R, Jiang H, Ma Y, Wang L, Wang L, Du
J, Hou P, Gao Y, Zhao L, Wang G, et al: PRMT7 induces
epithelial-to-mesenchymal transition and promotes metastasis in
breast cancer. Cancer Res. 74:5656–5667. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhao L, Zhang Y, Gao Y, Geng P, Lu Y, Liu
X, Yao R, Hou P, Liu D, Lu J, et al: JMJD3 promotes SAHF formation
in senescent WI38 cells by triggering an interplay between
demethylation and phosphorylation of RB protein. Cell Death Differ.
22:1630–1640. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao D and Huang Z: Effect of His-tag on
expression, purification, and structure of zinc finger protein,
ZNF191 (243–368). Bioinorg Chem Appl. 2016:82068542016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y,
Zhao L, Zhang Y, Huang B and Lu J: LincRNA-ROR induces
epithelial-to-mesenchymal transition and contributes to breast
cancer tumorigenesis and metastasis. Cell Death Dis. 5:e12872014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Levy D, Kuo AJ, Chang Y, Schaefer U,
Kitson C, Cheung P, Espejo A, Zee BM, Liu CL, Tangsombatvisit S, et
al: Lysine methylation of the NF-κB subunit RelA by SETD6 couples
activity of the histone methyltransferase GLP at chromatin to tonic
repression of NF-κB signaling. Nat Immunol. 12:29–36. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Trievel RC and Shilatifard A: WDR5, a
complexed protein. Nat Struct Mol Biol. 16:678–680. 2009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Binda O, Sevilla A, LeRoy G, Lemischka IR,
Garcia BA and Richard S: SETD6 monomethylates H2AZ on lysine 7 and
is required for the maintenance of embryonic stem cell
self-renewal. Epigenetics. 8:177–183. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mukherjee N, Cardenas E, Bedolla R and
Ghosh R: SETD6 regulates NF-κB signaling in urothelial cell
survival: Implications for bladder cancer. Oncotarget.
8:15114–15125. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Levy D, Liu CL, Yang Z, Newman AM,
Alizadeh AA, Utz and Gozani O: A proteomic approach for the
identification of novel lysine methyltransferase substrates.
Epigenetics Chromatin. 4:192011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Song JJ and Kingston RE: WDR5 interacts
with mixed lineage leukemia (MLL) protein via the histone
H3-binding pocket. J Biol Chem. 283:35258–35264. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dharmarajan V, Lee JH, Patel A, Skalnik DG
and Cosgrove MS: Structural basis for WDR5 interaction (Win) motif
recognition in human SET1 family histone methyltransferases. J Biol
Chem. 287:27275–27289. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Butler JS, Zurita-Lopez CI, Clarke SG,
Bedford MT and Dent SY: Protein-arginine methyltransferase 1
(PRMT1) methylates Ash2L, a shared component of mammalian histone
H3K4 methyltransferase complexes. J Biol Chem. 286:12234–12244.
2011. View Article : Google Scholar : PubMed/NCBI
|