1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Edwards BK, Ward E, Kohler BA, Eheman C,
Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I,
Seeff LC, et al: Annual report to the nation on the status of
cancer, 1975–2006, featuring colorectal cancer trends and impact of
interventions (risk factors, screening, and treatment) to reduce
future rates. Cancer. 116:544–573. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bosetti C, Levi F, Rosato V, Bertuccio P,
Lucchini F, Negri E and La Vecchia C: Recent trends in colorectal
cancer mortality in Europe. Int J Cancer. 129:180–191. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Fearon ER: Molecular genetics of
colorectal cancer. Ann Rev Pathol. 6:479–507. 2011. View Article : Google Scholar
|
6
|
Cuvillier O, Pirianov G, Kleuser B, Vanek
PG, Coso OA, Gutkind S and Spiegel S: Suppression of
ceramide-mediated programmed cell death by sphingosine-1-phosphate.
Nature. 381:800–803. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Newton J, Lima S, Maceyka M and Spiegel S:
Revisiting the sphingolipid rheostat: Evolving concepts in cancer
therapy. Exp Cell Res. 333:195–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Morad SA and Cabot MC:
Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer.
13:51–65. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Stiban J, Tidhar R and Futerman AH:
Ceramide synthases: Roles in cell physiology and signaling. Adv Exp
Med Biol. 688:60–71. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fan SH, Wang YY, Lu J, Zheng YL, Wu DM,
Zhang ZF, Shan Q, Hu B, Li MQ and Cheng W: CERS2 suppresses tumor
cell invasion and is associated with decreased V-ATPase and
MMP-2/MMP-9 activities in breast cancer. J Cell Biochem.
116:502–513. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen J, Li X, Ma D, Liu T, Tian P and Wu
C: Ceramide synthase-4 orchestrates the cell proliferation and
tumor growth of liver cancer in vitro and in vivo through the
nuclear factor-κB signaling pathway. Oncol Lett. 14:1477–1483.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Suzuki M, Cao K, Kato S, Komizu Y,
Mizutani N, Tanaka K, Arima C, Tai MC, Yanagisawa K, Togawa N, et
al: Targeting ceramide synthase 6-dependent metastasis-prone
phenotype in lung cancer cells. J Clin Invest. 126:254–265. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Edmond V, Dufour F, Poiroux G, Shoji K,
Malleter M, Fouqué A, Tauzin S, Rimokh R, Sergent O, Penna A, et
al: Downregulation of ceramide synthase-6 during
epithelial-to-mesenchymal transition reduces plasma membrane
fluidity and cancer cell motility. Oncogene. 34:996–1005. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Fitzgerald S, Sheehan KM, Espina V,
O'Grady A, Cummins R, Kenny D, Liotta L, O'Kennedy R, Kay EW and
Kijanka GS: High CerS5 expression levels associate with reduced
patient survival and transition from apoptotic to autophagy
signalling pathways in colorectal cancer. J Pathol Clin Res.
1:54–65. 2015. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Separovic D, Breen P, Joseph N, Bielawski
J, Pierce JS, VAN Buren E and Gudz TI: siRNA-mediated
down-regulation of ceramide synthase 1 leads to apoptotic
resistance in human head and neck squamous carcinoma cells after
photodynamic therapy. Anticancer Res. 32:2479–2485. 2012.PubMed/NCBI
|
16
|
Senkal CE, Ponnusamy S, Rossi MJ,
Bialewski J, Sinha D, Jiang JC, Jazwinski SM, Hannun YA and
Ogretmen B: Role of human longevity assurance gene 1 and
C18-ceramide in chemotherapy-induced cell death in human
head and neck squamous cell carcinomas. Mol Cancer Ther. 6:712–722.
2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Erez-Roman R, Pienik R and Futerman AH:
Increased ceramide synthase 2 and 6 mRNA levels in breast cancer
tissues and correlation with sphingosine kinase expression. Biochem
Biophys Res Commun. 391:219–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hartmann D, Lucks J, Fuchs S, Schiffmann
S, Schreiber Y, Ferreirós N, Merkens J, Marschalek R, Geisslinger G
and Grösch S: Long chain ceramides and very long chain ceramides
have opposite effects on human breast and colon cancer cell growth.
Int J Biochem Cell Biol. 44:620–628. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cancer Genome Atlas Network: Comprehensive
molecular characterization of human colon and rectal cancer.
Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kogo R, Shimamura T, Mimori K, Kawahara K,
Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, et al:
Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin
modification and is associated with poor prognosis in colorectal
cancers. Cancer Res. 71:6320–6326. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sanz-Pamplona R, Berenguer A, Cordero D,
Molleví DG, Crous-Bou M, Sole X, Paré-Brunet L, Guino E, Salazar R,
Santos C, et al: Aberrant gene expression in mucosa adjacent to
tumor reveals a molecular crosstalk in colon cancer. Mol Cancer.
13:462014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ryan BM, Zanetti KA, Robles AI, Schetter
AJ, Goodman J, Hayes RB, Huang WY, Gunter MJ, Yeager M, Burdette L,
et al: Germline variation in NCF4, an innate immunity gene, is
associated with an increased risk of colorectal cancer. Int J
Cancer. 134:1399–1407. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sheffer M, Bacolod MD, Zuk O, Giardina SF,
Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA and Domany E:
Association of survival and disease progression with chromosomal
instability: A genomic exploration of colorectal cancer. Proc Natl
Acad Sci USA. 106:7131–7136. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
de Sousa E, Melo F, Colak S, Buikhuisen J,
Koster J, Cameron K, de Jong JH, Tuynman JB, Prasetyanti PR,
Fessler E, van den Bergh SP, et al: Methylation of
cancer-stem-cell-associated Wnt target genes predicts poor
prognosis in colorectal cancer patients. Cell Stem Cell. 9:476–485.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Edge SB and Cancer AJCo: AJCC Cancer
Staging Handbook: Form the AJCC Cancer Staging Manual. Springer;
New York: 2010
|
27
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ruckhäberle E, Rody A, Engels K, Gaetje R,
von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U,
Karn T, et al: Microarray analysis of altered sphingolipid
metabolism reveals prognostic significance of sphingosine kinase 1
in breast cancer. Breast Cancer Res Treat. 112:41–52. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Mullen TD, Hannun YA and Obeid LM:
Ceramide synthases at the centre of sphingolipid metabolism and
biology. Biochem J. 441:789–802. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Park JW, Park WJ and Futerman AH: Ceramide
synthases as potential targets for therapeutic intervention in
human diseases. Biochim Biophys Acta. 1841:671–681. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Mesicek J, Lee H, Feldman T, Jiang X,
Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z and
Kolesnick R: Ceramide synthases 2, 5, and 6 confer distinct roles
in radiation-induced apoptosis in HeLa cells. Cell Signal.
22:1300–1307. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mandala SM, Thornton R, Tu Z, Kurtz MB,
Nickels J, Broach J, Menzeleev R and Spiegel S: Sphingoid base
1-phosphate phosphatase: A key regulator of sphingolipid metabolism
and stress response. Proc Natl Acad Sci USA. 95:150–155. 1998.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Panjarian S, Kozhaya L, Arayssi S, Yehia
M, Bielawski J, Bielawska A, Usta J, Hannun YA, Obeid LM and Dbaibo
GS: De novo N-palmitoylsphingosine synthesis is the major
biochemical mechanism of ceramide accumulation following p53
up-regulation. Prostaglandins Other Lipid Mediat. 86:41–48. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Karahatay S, Thomas K, Koybasi S, Senkal
CE, Elojeimy S, Liu X, Bielawski J, Day TA, Gillespie MB, Sinha D,
et al: Clinical relevance of ceramide metabolism in the
pathogenesis of human head and neck squamous cell carcinoma
(HNSCC): Attenuation of C18-ceramide in HNSCC tumors
correlates with lymphovascular invasion and nodal metastasis.
Cancer Lett. 256:101–111. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Senkal CE, Ponnusamy S, Bielawski J,
Hannun YA and Ogretmen B: Antiapoptotic roles of
ceramide-synthase-6-generated C16-ceramide via selective
regulation of the ATF6/CHOP arm of ER-stress-response pathways.
FASEB J. 24:296–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pewzner-Jung Y, Brenner O, Braun S, Laviad
EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D,
Raanan C, Berkutzki T, et al: A critical role for ceramide synthase
2 in liver homeostasis: II. insights into molecular changes leading
to hepatopathy. J Biol Chem. 285:10911–10923. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jin J, Hou Q, Mullen TD, Zeidan YH,
Bielawski J, Kraveka JM, Bielawska A, Obeid LM, Hannun YA and Hsu
YT: Ceramide generated by sphingomyelin hydrolysis and the salvage
pathway is involved in hypoxia/reoxygenation-induced Bax
redistribution to mitochondria in NT-2 cells. J Biol Chem.
283:26509–26517. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pewzner-Jung Y, Park H, Laviad EL, Silva
LC, Lahiri S, Stiban J, Erez-Roman R, Brügger B, Sachsenheimer T,
Wieland F, et al: A critical role for ceramide synthase 2 in liver
homeostasis: I. alterations in lipid metabolic pathways. J Biol
Chem. 285:10902–10910. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Spassieva SD, Ji X, Liu Y, Gable K,
Bielawski J, Dunn TM, Bieberich E and Zhao L: Ectopic expression of
ceramide synthase 2 in neurons suppresses neurodegeneration induced
by ceramide synthase 1 deficiency. Proc Natl Acad Sci USA.
113:5928–5933. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Laviad EL, Albee L, Pankova-Kholmyansky I,
Epstein S, Park H, Merrill AH Jr and Futerman AH: Characterization
of ceramide synthase 2: Tissue distribution, substrate specificity,
and inhibition by sphingosine 1-phosphate. J Biol Chem.
283:5677–5684. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bao Y, Guo Y, Zhang C, Fan F and Yang W:
Sphingosine kinase 1 and sphingosine-1-phosphate signaling in
colorectal cancer. Int J Mol Sci. 18:E21092017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Long J, Xie Y, Yin J, Lu W and Fang S:
SphK1 promotes tumor cell migration and invasion in colorectal
cancer. Tumour Biol. 37:6831–6836. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Smartt HJ, Greenhough A, Ordóñez-Morán P,
Talero E, Cherry CA, Wallam CA, Parry L, Al Kharusi M, Roberts HR,
Mariadason JM, et al: β-catenin represses expression of the tumour
suppressor 15-prostaglandin dehydrogenase in the normal intestinal
epithelium and colorectal tumour cells. Gut. 61:1306–1314. 2012.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Wolf I, O'Kelly J, Rubinek T, Tong M,
Nguyen A, Lin BT, Tai HH, Karlan BY and Koeffler HP:
15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of
human breast cancer. Cancer Res. 66:7818–7823. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ding Y, Tong M, Liu S, Moscow JA and Tai
HH: NAD+-linked 15-hydroxyprostaglandin dehydrogenase
(15-PGDH) behaves as a tumor suppressor in lung cancer.
Carcinogenesis. 26:65–72. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Song HJ, Myung SJ, Kim IW, Jeong JY, Park
YS, Lee SM, Nam WH, Ryu YM, Fink SP, Yang DH, et al:
15-hydroxyprostaglandin dehydrogenase is downregulated and exhibits
tumor suppressor activity in gastric cancer. Cancer Invest.
29:257–265. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Myung SJ, Rerko RM, Yan M, Platzer P, Guda
K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, et al:
15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of
colon tumorigenesis. Proc Natl Acad Sci USA. 103:12098–12102. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49
|
White-Gilbertson S, Mullen T, Senkal C, Lu
P, Ogretmen B, Obeid L and Voelkel-Johnson C: Ceramide synthase 6
modulates TRAIL sensitivity and nuclear translocation of active
caspase-3 in colon cancer cells. Oncogene. 28:1132–1141. 2009.
View Article : Google Scholar : PubMed/NCBI
|